ARTICLE IN PRESS

Engineering Fracture Mechanics xxx (2018) xxx-xxx

Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

Estimation of C* including the effect of threshold stress

Huan Sheng Lai^a, Shu Feng Xu^a, Kang Lin Liu^a, Chunmei Bai^{b,*}, Ling Zhu Gong^a, Jin-quan Guo^c

^a School of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350-116, China

^b College of Civil Engineering, Fuzhou University, Fuzhou, Fujian 350116, China

^c School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350-116, China

ARTICLE INFO

Article history: Received 24 June 2017 Received in revised form 13 December 2017 Accepted 20 December 2017 Available online xxxx

Keywords: Threshold stress Estimation method of C* GE/EPRI method Reference stress method

ABSTRACT

In some alloys such as 9%Cr heat resistant steels and magnesium alloys, the creep constitutive equation of the power-law requires a term of threshold stress due to the presence of second phase particles. It is necessary to establish an estimation method of C^* for such alloys to predict the life of their components. In this paper, the General Electric/Electric Power Research Institute (GE/EPRI) method and the reference stress method were modified to estimate C^* for power-law creep materials with threshold stress. The finite element method was used to verify the accuracy of the modified methods. The accuracy of the calculation equation of C^* in the American Society for Testing Materials (ASTM) E 1457 was also assessed. The results indicated that the modified GE/EPRI method was sufficiently exact as an engineering method. h_1 was slightly affected by the applied load and significantly affected by the threshold stress. The accuracy of the calculation equation of C^* in ASTM E 1457 was not affected by the threshold stress and the equation could be directly used for power-law creep materials with threshold stress and the equation could be directly used for power-law creep materials with threshold stress.

1. Introduction

 C^* is one of the parameters used for characterizing the creep crack growth and the stress field at the crack tip region. Accurate estimation of C^* plays an important role in the analysis of fracture mechanics and lifetime prediction for structures at elevated temperatures. Many studies have been conducted to research estimation methods of C^* . The General Electric/ Electric Power Research Institute (GE/EPRI) method is widely used to estimate C^* for homogeneous materials [1,2]. The reference stress method is another widely used method for estimating C^* [3,4]. Based on the reference stress method, Xuan [5] proposed a method to estimate C^* for mismatched weld creep cracks and Kim [6,7] proposed an enhanced reference stress method to estimate C^* . Other methods have also been proposed to estimate C^* for mismatched weld creep cracks [8,9] in addition to cracks in thin T-sections [10] and annular discs [11]. Further, the calculation equation of C^* in the American Society for Testing Materials (ASTM) E 1457 was modified for mismatched weld creep cracks by Xuan [12]. However, there has been no research on the estimation of C^* for materials with power-law creep constitutive equations that include a term of threshold stress. Since threshold stress exists in some alloys due to the presence of second-phase or nanometer-sized particles, such as dispersion hardened alloys [13–16] and nanocomposites [17,18], it is necessary to establish estimation methods of C^* with the effect of threshold stress included.

* Corresponding author.

E-mail address: baichunmei2005@163.com (C. Bai).

https://doi.org/10.1016/j.engfracmech.2017.12.032 0013-7944/© 2018 Elsevier Ltd. All rights reserved.

2

H.S. Lai et al./Engineering Fracture Mechanics xxx (2018) xxx-xxx

Nomenclature	
А	power-law creep coefficient
a	crack length
В	specimen thickness
<i>C</i> *	a path-independent C-integral defined under the extensive steady state creep stage
C_{EDRI}^*	C [*] estimated by the GE/EPRI method
C_{FFM}^*	C [*] calculated by finite element method
$C_{\rm RFF}^*$	C [*] estimated by reference stress method
C_{Vc}^*	C [*] calculated by the equation in ASTM E 1457
E	Young's modulus
$e_{\rm EPRI}$	$e_{ ext{EPRI}} = 100\% imes (C^*_{ ext{EPRI}} - C^*_{ ext{FEM}})/C^*_{ ext{FEM}}$
e_{REF}	$e_{\mathrm{REF}} = 100\% imes (C_{\mathrm{REF}}^* - C_{\mathrm{FEM}}^*)/C_{\mathrm{FEM}}^*$
e _{Vc}	$e_{ m Vc} = 100\% imes \left(\widetilde{C}_{ m Vc}^* - C_{ m FEM}^* ight) / \widetilde{C}_{ m FEM}^*$
ż	creep strain rate
$\dot{\varepsilon}_{ref}$	creep strain rate at $\sigma_{ m ref}$
$h_1(a/W, n)$ dimensionless function of a/W and n	
$h_1(a/W, n, \sigma_0)$	dimensionless function of a/W , n , and σ_0
п	power-law creep exponent
η_1	a dimensionless function dependent on <i>a</i> and <i>W</i>
Р	applied load
$P_{\rm L}$	plastic limit load
$(V_c)_{SS}$	load line deflection rate under the extensive steady state creep stage
W	specimen width
v.	Poisson's ratio
σ, σ, σ_0	stress, stress rate, and threshold stress, respectively
$\sigma_{0.2}, \sigma_{ m ref}$	0.2% proof stress or the stress at 0.2% inelastic strain, and reference stress, respectively

In this paper, the GE/EPRI method and the reference stress method were implemented first, then modified to estimate C^* for power-law creep materials with threshold stress. The finite element method was then used to verify and assess the accuracy of the modified methods. The accuracy of the calculation equation of C^* in ASTM E 1457 was also investigated.

2. Estimation method of C*

When the primary creep and tertiary creep stages are ignored, the steady state creep stage with elastic properties is usually described by a constitutive equation of elastic plus power-law creep [9]:

$$\dot{\varepsilon} = \frac{\dot{\sigma}}{E} + A\sigma^n \tag{1}$$

where *A* and *n* are the creep coefficient and exponent, respectively; *E* is the elastic modulus; $\dot{\varepsilon}$ is the creep strain rate; σ and $\dot{\sigma}$ are the stress and stress rate, respectively. Under the extensive steady state creep stage, *C*^{*} for compact tension (CT) specimens can be estimated using the GE/EPRI method (denoted as C_{EPRI}^*):

$$C_{\text{EPRI}}^* = A(W-a)h_1(a/W, n) \left(\frac{P}{1.455\eta_1 B(W-a)}\right)^{n+1}$$
(2)

where *W* is the specimen width, *B* is the specimen thickness, *a* is the crack length, *P* is the applied load, η_1 is the dimensionless function of *a* and *W*, and h_1 is the dimensionless function of *a/W* and *n* [19]. *C*^{*} can also be estimated using the reference stress method (denoted as C_{REF}^*) [20]:

$$C_{\rm REF}^* = \left(\frac{K^2}{E'}\right) \frac{E\dot{\varepsilon}_{\rm ref}}{\sigma_{\rm ref}} \tag{3}$$

where *K* is the stress intensity factor, σ_{ref} is the reference stress, $\dot{\varepsilon}_{ref}$ is the creep strain rate at σ_{ref} ($\dot{\varepsilon}_{ref} = A\sigma_{ref}^n$), E' = E for plane stress, and $E' = E/(1 - v^2)$ for plane strain. In addition, based on the ASTM E 1457 standard [21], C^* for CT specimens can be calculated with the following equation using the load line displacement rate (denoted as C_{Vc}^*):

$$C_{\rm Vc}^* = \frac{P(\dot{V}_{\rm c})_{\rm SS}}{BW} \left(\frac{2}{(1-a/W)} + 0.522\right) \frac{n}{n+1} \tag{4}$$

where $(V_c)_{SS}$ is the load line deflection rate under the extensive steady state creep stage.

Please cite this article in press as: Lai HS et al. Estimation of C* including the effect of threshold stress. Engng Fract Mech (2018), https:// doi.org/10.1016/j.engfracmech.2017.12.032 Download English Version:

https://daneshyari.com/en/article/7169040

Download Persian Version:

https://daneshyari.com/article/7169040

Daneshyari.com