ARTICLE IN PRESS

Engineering Fracture Mechanics xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

A simplified evaluation of the mechanical energy release rate of kinked cracks in piezoelectric materials using the boundary element method

Jun Lei ^{a,*}, Chuanzeng Zhang ^b

ARTICLE INFO

Article history: Received 23 May 2017 Received in revised form 7 July 2017 Accepted 7 July 2017 Available online xxxx

Keywords: Crack problems Mechanical energy release rate Fracture criteria Piezoelectric materials Traction BIEs

ABSTRACT

Based on the concept of the hoop field intensity factors of an initial crack prior to any kink, an apparent hoop mechanical (strain) energy release rate (MERR) is defined to approximate the MERR of a piezoelectric crack with an infinitesimal kink at any arbitrary angle. The validity and the efficiency of the simplified approximation are examined by numerical examples using the boundary element method (BEM). The generalized crack-openingdisplacements or displacement jumps are computed by the traction boundary integral equations (BIEs). By using the displacement extrapolation method, the crack-tip field intensity factors of any arbitrarily kinked crack in linear piezoelectric materials are obtained and the BEM results are validated by comparing them with the available reference analytical results. Then, the differences between the conventional field intensity factors and MERR of an infinitesimally kinked crack and the hoop field intensity factors and hoop MERR of the main crack prior to any kink are numerically analyzed. Finally, the crack propagation in an infinite linear piezoelectric material is numerically simulated. The paths of the crack growth are predicted by adopting four different fracture criteria, namely, the maximum hoop stress intensity factor (SIF) and MERR fracture criteria for the main crack-tip before the next propagation, and the maximum K_1 and MERR fracture criteria for the kinked tip of the main crack with an infinitesimal branch at an arbitrary kinking angle evaluated by using a trial crack extension technique. The comparisons among these results show that the present simplified approximation can efficiently provide a sufficient accuracy for numerical simulation of crack growth in linear piezoelectric materials.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the electro-mechanical coupling behavior, piezoelectric ceramics (such as PZT-4, PZT-5h, PZT-6b, and BaTiO₃) are widely used in smart structures and electronic devices. Unfortunately, commercial available piezo-ceramics are rather susceptible to fracture and damage due to their inherent brittleness and low fracture toughness, especially under highly concentrated stresses and electrical fields. To assure a sufficient reliability of technical devices for advanced engineering

* Corresponding author.

E-mail address: leijun@bjut.edu.cn (J. Lei).

http://dx.doi.org/10.1016/j.engfracmech.2017.07.008 0013-7944/© 2017 Elsevier Ltd. All rights reserved.

Please cite this article in press as: Lei J, Zhang C. A simplified evaluation of the mechanical energy release rate of kinked cracks in piezo-electric materials using the boundary element method. Engng Fract Mech (2017), http://dx.doi.org/10.1016/j.engfracmech.2017.07.008

^a Department of Engineering Mechanics, Beijing University of Technology, Beijing 100124, PR China

^b Department of Civil Engineering, University of Siegen, D-57068 Siegen, Germany

Nomenclature

```
Latin symbols
```

A characteristic crack-length

 A, B, B_1 material matrices related to the characteristic roots and eigenvectors

a_l eigenvectors of the characteristic equation

 \mathbf{b}_{l} vectors defined as $(\mathbf{R}^{T} + \mu_{l}\mathbf{T})\mathbf{a}_{l}$

 c_{ijkl} elasticity tensor

 c_{ijKl} extended elasticity tensor

 c_{ij} elasticity matrix

 D_i electric displacement vector D_{ω} hoop electric displacement vector

E_i electric field vector

 e_{kij} third-order piezoelectric tensor

 $egin{array}{ll} e_{kq} & ext{piezoelectric matrix} \\ f(z) ext{ or } f(z_i) & ext{complex analytic functions} \\ G & ext{total crack-tip ERR} \end{array}$

 $\begin{array}{ll} G_{\rm M} & {\rm MERR} \\ G_{\omega}^{\rm m} & {\rm hoop\; ERR} \\ G_{{\rm M}\omega}^{\rm m} & {\rm hoop\; MERR} \end{array}$

 $G_{\omega}^{
m Irwin}$ ERR of a small crack-kink evaluated by the modified Irwin formula $G_{M\omega}^{
m Irwin}$ MERR of a small crack-kink evaluated by the modified Irwin formula

 $\mathbf{K}(K_I, K_{II}, K_D)$ generalized SIFs K_I or K_1 mode-I SIF K_{II} or K_2 mode-II SIF

 K_D or K_3 electric displacement intensity factor

K^b generalized SIFs of an infinitesimally small crack-kink

 $\mathbf{K}_{\omega}(K_{\omega\omega},K_{r\omega},K_{D\omega})$ generalized hoop SIFs

 $K_{\omega\omega}$ hoop SIF $K_{r\omega}$ shear SIF

 $K_{D\omega}$ hoop electric displacement intensity factor $\mathbf{K}_{\omega}^{\mathrm{m}}$ hoop intensity factors of the main crack \mathbf{L} or L_{ij} material matrix defined as $2\mathrm{Re}[\mathbf{Y}]$ L length of the small kinked branch n_i outward unit normal vector p_J traction/surface charge vector

r polar coordinate

 s_{IJ}^* traction fundamental solutions

 $\mathbf{t_1}$ traction vector defined as $\{\sigma_{11}, \sigma_{12}, D_1\}^T$ $\mathbf{t_2}$ traction vector defined as $\{\sigma_{21}, \sigma_{22}, D_2\}^T$

 $egin{array}{ll} egin{array}{ll} egi$

 Δu generalized crack-opening-displacements Q, R, T system matrices of the characteristic equation

x observation point

Y Irwin matrix defined as *i***AB**¹

 z_M, z_M^0 counterpart of the source and the observation points

Greek symbols

 ξ source point

 δ distance to the crack-tip ϵ extended strain tensor ϵ_{ij} mechanical strain tensor κ_{ij} second-order dielectric tensor ϕ electrical potential

 ϕ_M shape functions

R coordinate transformation matrix

 μ_{I} complex roots of the characteristic equation

Please cite this article in press as: Lei J, Zhang C. A simplified evaluation of the mechanical energy release rate of kinked cracks in piezo-electric materials using the boundary element method. Engng Fract Mech (2017), http://dx.doi.org/10.1016/j.engfracmech.2017.07.008

Download English Version:

https://daneshyari.com/en/article/7169186

Download Persian Version:

https://daneshyari.com/article/7169186

<u>Daneshyari.com</u>