ARTICLE IN PRESS

Engineering Fracture Mechanics xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

A novel conjugated bond linear elastic model in bond-based peridynamics for fracture problems under dynamic loads

Xiaoping Zhou^{a,b,c,*}, Yunteng Wang^{a,b,c}, Yundong Shou^{a,b,c}, Miaomiao Kou^a

^a State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400045, PR China ^b School of Civil Engineering, Chongqing University, Chongqing 400045, PR China

^c Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, PR China

ARTICLE INFO

Article history: Received 20 January 2017 Received in revised form 18 July 2017 Accepted 24 July 2017 Available online xxxx

Keywords: Linear elastic model Conjugated bond-based peridynamics Crack propagation Dynamic loads The standard bond-based peridynamics

ABSTRACT

A novel conjugated bond linear elastic model is proposed and implemented into the bondbased peridynamic (BB-PD) framework. In this model, micro-elastic PD bond energy is not only related to the normal stretch of bonds, but also related to the rotation bond angles of a pair of conjugated bonds. Therefore, micro bond energy mechanism in this study is different from that in the classical continuum mechanism or the standard BB-PD. Only one micro-elastic constant in the standard BB-PD results in the limitation of the effective Poisson's ratio for isotropic material. However, the novel conjugated bond linear elastic model incorporating two micro-elastic constants are proposed, which can overcome the limitation of Poisson's ratio in the standard BB-PD. By comparing the strain energy in the proposed model with that in the classical elastic model, the corresponding micromacro parameter relationships can be established. In addition, energy-based bond rupture criteria are implemented in the proposed numerical model to simulate fracture problems under dynamic loads. In order to verify the ability and accuracy of the proposed numerical model to simulate fracture problems under dynamic loads, some numerical examples are investigated. The present numerical results are in good agreement with the previous experimental and numerical results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In computation mechanics, numerical simulation of fracture problems for both static cracks and dynamic cracks is still an active and persistent challenge. There are some different methods to model cracks in finite element and meshfree methods. For the finite element method, one of the simple and robust methods is interelement separation model where cracks are modeled along element interfaces in the mesh [1–4]. Another simple method to model cracks was developed by Remmers et al. [5] who introduced crack segments in finite elements. The embedded discontinuity model was also proposed by Armero and Garikipati [6], Belytschko et al. [7], Samaniego et al. [8] in the finite element mesh to simulate crack problems. Based on the 'local' partition of unity, the extended finite element method (XFEM), which is a very accurate method for crack problems, was developed by Belytschko and Black [9] and Moes et al. [10]. For the previous meshfree method, Rabczuk and Belytschko [11,12] developed a 'cracking particle' model (CPM) in meshfree method, where discontinuities are introduced at

* Corresponding author at: State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400045, PR China. *E-mail address:* xiao_ping_zhou@126.com (X. Zhou).

http://dx.doi.org/10.1016/j.engfracmech.2017.07.031 0013-7944/© 2017 Elsevier Ltd. All rights reserved.

Please cite this article in press as: Zhou X et al. A novel conjugated bond linear elastic model in bond-based peridynamics for fracture problems under dynamic loads. Engng Fract Mech (2017), http://dx.doi.org/10.1016/j.engfracmech.2017.07.031

X. Zhou et al./Engineering Fracture Mechanics xxx (2017) xxx-xxx

$C(\xi)$ micro-modulus constant in bond-based peridynamics C_n normal stiffness of bonds D ratio of amount of broken bonds to the total amount of interaction in one horizon E Young's modulus E classic Lagrange strain tensor f pairwise force function in conjugated bond-based peridynamics f_n normal bond force density in conjugated bond-based peridynamics f_n angent bond force density F approximate deformation gradient G_s fracture surface energy H_X horizon of a given material point XIidentity tensor K bulk elastic modulus m_{RW} moment vector density due to a pair of conjugated bonds s bond stretch m_{RW} moment vector density due to a pair of conjugated bonds s bond stretch w scalar-valued micro-potential function w_i caceleration vectors of the material point X w_i caceleration vectors of the material point X w_i mortain energy micro-potential w_i cacitar-valued micro-potential function w_i micro-potential function w_i micro-potential energy function w_i micro-potential energy density w_i critical strain energy density w_i material point X in energy density w_i material energy density w_i material energy density w_i material energy density w_i micro-potential energy density	Nomenclature	
(v)normal stiffness of bonds \mathcal{G}_n normal stiffness of bonds \mathcal{D} ratio of amount of broken bonds to the total amount of interaction in one horizon \mathcal{V} \mathcal{V} pairwise force function in conjugated bond-based peridynamics f_n normal bond force density in conjugated bond-based peridynamics f_n angent bond force density \mathcal{F} approximate deformation gradient \mathcal{G} shear modulus \mathcal{G} fracture surface energy \mathcal{H}_n horizon of a given material point X \mathcal{I} identity tensor \mathcal{K} bulk elastic modulus $m_{\rm Bk}$ moment vector density due to a pair of conjugated bonds \mathcal{S}_n normal bond stretch $\mathcal{U}(X)$ velocity vectors of the material point X $\mathcal{U}(X)$ vecleration energy density inco-potenti	$C(\mathcal{E})$	micro-modulus constant in bond-based peridynamics
Dratio of amount of broken bonds to the total amount of interaction in one horizonEYoung's moduluseelastic Lagrange strain tensorJpairwise force function in conjugated bond-based peridynamicsJnormal bond force density in conjugated bond-based peridynamicsFtangent bond force density in conjugated bond-based peridynamicsFapproximate deformation gradientGshear modulusGcfracture surface energyHhoirizon of a give material point XIidentity tensorKbulk elastic modulus m_{jkk} moment vector density due to a pair of conjugated bondssbond stretchsnnormal bond stretchu(X)displacement vectors of the material point Xu(X)velocity vectors of the material point Xu(X)velocity vectors of the material point Xwithnormal bend stretchwithnormal stretch strain energy micro-potentialw/inormal stretch strain energy micro-potentialw/inormal stretch strain energy densityw/icritical strain energy densityw/imacro-elastic strain energy densityw/inormal bond stretchw/inormal bond stretchw/inormal bond stretchw/inormal bond stretch <t< th=""><th>C_n</th><th>normal stiffness of bonds</th></t<>	C _n	normal stiffness of bonds
EYoung's modulusEelastic Lagrange strain tensorJpairwise force function in conjugated bond-based peridynamicsJnnormal bond force density in conjugated bond-based peridynamicsJrtangent bond force density inGshear modulusGshear modulusGrfracture surface energyHxhorizon of a given material point XIidentity tensorKbulk elastic modulusmpikmoment vector density due to a pair of conjugated bondssbond stretchs_nnormal bond stretchu(X)displacement vectors of the material point Xu(X)velocity vectors of the material point Xu(X)velocity vectors of the material point Xwscclar-valued micro-potential functionw/rnormal bondw/rscclar-valued micro-potential functionw/rmacro-elastic strain energy functionw/rmacro-elastic strain energy discretialw/rmacro-elastic strain energy densityw/rmacro-elastic strain energy densityw/rmacro-elastic strain energy densityw/rnacro-elastic strain energy density </th <th>D</th> <th>ratio of amount of broken bonds to the total amount of interaction in one horizon</th>	D	ratio of amount of broken bonds to the total amount of interaction in one horizon
E elstic Lagrange strain tensor f pairwise force function in conjugated bond-based peridynamics f normal bond force density in conjugated bond-based peridynamics f tangent bond force density in conjugated bond-based peridynamics f tangent bond force density in conjugated bond-based peridynamics f tangent bond force density F approximate deformation gradient G shear modulus f identity tensor K bulk elastic modulus m _{init} moment vector density due to a pair of conjugated bonds s bond stretch u(X) displacement vectors of the material point X u(X) acceleration vector	Ε	Young's modulus
fpairwise force function in conjugated bond-based peridynamicsfnormal bond force density in conjugated bond-based peridynamicsftangent bond force densityFapproximate deformation gradientGshear modulusGcfracture surface energyHxhorizon of a given material point XIidentity tensorKbulk elastic modulus m_{lik} moment vector density due to a pair of conjugated bondssbond stretch s_n normal bond stretchu(X)displacement vectors of the material point Xu(X)velocity vectors of the material point Xu(X)velocity vectors of the material point Xwscalar-valued micro-potential function w_i scalar-valued micro-potential function w_i scalar-valued micro-potential function w_i macro-elastic strain energy function w_i macro-elastic strain energy density W_{iD} macro-elastic strain energy density W_{iD} macro-elastic strain energy density W_{iD} macro-elastic for a given point X in the reference configuration δ rotation and andreial point in the deformed configuration δ rotation andreial point in deformed configuration M_{iD} macro-elastic strain energy density W_{iD} macro-elastic strain energy density W_{iD} macro-elastic strain energy density M_{iD} conjugated bond angle in the reference configuration δ relative displacement vector betw	Ε	elastic Lagrange strain tensor
f_n normal bond force density in conjugated bond-based peridynamics f_r tangent bond force densityFapproximate deformation gradientGshear modulusG_rfracture surface energy H_x borizon of a given material point X Iidentity tensorKbulk elastic modulus m_{gk} moment vector density due to a pair of conjugated bonds s_n normal bond stretch $u(X)$ displacement vectors of the material point X $u(X)$ displacement vectors of the material point X $u(X)$ acceleration vectors of the material point X $u(X)$ acceleratic strain energy density w_i cratic strain energy density w_i cratic strain energy density w_i nacro-elastic strain energy density w_i nacro-elastic strain energy density <tr< th=""><th>f</th><th>pairwise force function in conjugated bond-based peridynamics</th></tr<>	f	pairwise force function in conjugated bond-based peridynamics
$f_{\rm r}$ tangent bond force density ${\bf F}$ approximate deformation gradient ${\bf G}_{\rm c}$ fracture surface energy ${\bf H}_{\rm k}$ horizon of a given material point ${\bf X}$ ${\bf I}$ identity tensor ${\bf K}$ bulk elastic modulus ${\bf m}_{jk}$ moment vector density due to a pair of conjugated bonds ${\bf s}$ bond stretch ${\bf s}_n$ normal bond stretch ${\bf u}({\bf X})$ vectors of the material point ${\bf X}$ ${\bf u}({\bf X})$ vectors of the material point ${\bf X}$ ${\bf u}({\bf X})$ vectors of the material point ${\bf X}$ ${\bf u}({\bf X})$ vectors of the material point ${\bf X}$ ${\bf u}({\bf X})$ vectors of the material point ${\bf X}$ ${\bf u}({\bf X})$ vectors of the material point ${\bf X}$ ${\bf u}({\bf X})$ vectors of the material point ${\bf X}$ ${\bf u}({\bf X})$ vectors of the material point ${\bf X}$ ${\bf u}({\bf X})$ vectors of the material point ${\bf X}$ ${\bf w}_i$ scalar-valued micro-potential function ${\bf w}_i$ ortation strain energy micro-potential ${\bf w}_i$ ortation strain energy density ${\bf w}_i$ macro-elastic strain energy density ${\bf w}_i^{po}$ macro-elastic rotation strain energy density ${\bf w}_i^{po}$ macro-elastic ortation strain energy density ${\bf w}_i^{po}$ macro-elastic rotation strain energy density ${\bf w}_i^{po}$ macro-elastic rotation strain energy density ${\bf w}_i^{po}$ macro-elastic rotation strain energy density ${\bf w}_i^{po}$ naterial point in deform	\boldsymbol{f}_n	normal bond force density in conjugated bond-based peridynamics
Fapproximate deformation gradientGshear modulusGrfracture surface energyHxhorizon of a given material point XIidentity tensorKbulk clastic modulus m_{jkk} moment vector density due to a pair of conjugated bondssbond stretchs_nnormal bond stretchu(X)displacement vectors of the material point Xu(X)velocity vectors of the material point Xu(X)acceleration vectors of the material point Xwscalar-valued micro-potential functionwnormal stretch strain energy functionwcritical strain energy density in the bondW ^{PD} macro-elastic strain energy densityW ^{PD} macro-elastic strain energy densityW ^{PD} macro-elastic strain energy densityW ^{PD} macro-elastic ordation strain energy densityNPneighbor particle for a given point X in the reference configurationXneighbor particle for a given point X in the reference configurationXneighbor particle for a given point X in the reference configuration A' neighbor particle for a given point X in the reference configuration A' neighbor particle for a given point X in the reference configurati	f_t	tangent bond force density
Gshear modulusGcfracture surface energyHxhorizon of a given material point XIidentity tensorKbulk elastic modulus m_{jik} moment vector density due to a pair of conjugated bonds s_n normal bond stretch s_n normal bond stretchu(X)displacement vectors of the material point Xu(X)velocity vectors of the material point Xwscalar-valued micro-potential function w_i scalar-valued micro-potential due to a pair of conjugated bonds w_i micro-potential energy micro-potential w_i micro-potential energy function w_i micro-potential in the bond W^{PD} macro-elastic strain energy density W^{PD} macro-elastic stretch strain energy density W_i^p macro-elastic rotation strain energy density W_i^p nacro-elastic rotation strain energy density W_i^p nacro-elastic rotation strain energy density W_i^p nacro-elastic for a given point X in deformed configurationXlocation of a material point in the reference configurationXneighbor particle for a given point X in the reference configuration M_i strain tensor in the bond ξ_i ϕ_{hab} conjugated bond angle in the reference configuration K notation energy W_i^p nacro-elastic for a given point X in the reference configuration K neighbor particle for a given point X in the reference configuration G_i strain tensor in the bond	F	approximate deformation gradient
G_c fracture surface energy H_X horizon of a given material point X Iidentity tensor K bulk elastic modulus m_{jik} moment vector density due to a pair of conjugated bonds s bond stretch s_n normal bond stretch $u(X)$ displacement vectors of the material point X $u(X)$ velocity vectors of the material point X $u(X)$ velocity vectors of the material point X $u(X)$ acceleration vectors of the material point X w scalar-valued micro-potential function w_i normal stretch strain energy micro-potential w_i nortain energy micro-potential due to a pair of conjugated bonds w_i micro-potential energy function w_c critical strain energy density in classical elastic mechanics W^{ip} macro-elastic stretch strain energy density W^{ip} macro-elastic stratin energy density W_{j}^{ip} macro-elastic stratin energy density W_{j}^{ip} macro-elastic rotation strain energy density W_{j}^{ip} macro-elastic rotation strain energy density X location of a material point in theoremed configuration X neighbor particle for a given point X in deformed configuration X neighbor particle for a given point X in the reference configuration X neighbor particle for a given point X in deformed configuration X neighbor particle for a given point X in the reference configuration A neighbor particle for a given point X in the	G	shear modulus
H_x horizon of a given material point XIidentity tensor K bulk elastic modulus m_{jk} moment vector density due to a pair of conjugated bonds s_b bond stretch s_n normal bond stretch $u(X)$ displacement vectors of the material point X $u(X)$ velocity vectors of the material point X $u(X)$ acceleration vectors of the material point X $u(X)$ acceleration vectors of the material point X w scalar-valued micro-potential function w_i rotation Strain energy micro-potential w_i rotation Strain energy potential in the bond W^{rp} macro-elastic strain energy density W^{rp} macro-elastic strain energy density W^{rp} macro-elastic strain energy density W_i^{rp} macro-elastic strain energy density W_i^{rp} macro-elastic trotation strain energy density W_i^{rp} macro-elastic strain energy density W_i^{rp}	G_c	fracture surface energy
Iidentify tensorKbulk elastic modulus m_{jik} moment vector density due to a pair of conjugated bondssbond stretch s_n normal bond stretchu(X)displacement vectors of the material point Xu(X)velocity vectors of the material point Xu(X)velocity vectors of the material point Xu(X)acceleration vectors of the material point Xu(X)acceleration vectors of the material point Xwscalar-valued micro-potential functionw_normal stretch strain energy micro-potentialw_irotation Strain energy micro-potential due to a pair of conjugated bondsw_cmicro-potential energy functionw_ccritical strain energy densityw ^{PD} macro-elastic strain energy densityW ^{PD} macro-elastic strain energy densityW ^{PD} macro-elastic rotation strain energy densityW ^{PD} macro-elastic rotation strain energy densityxlocation of a material point x in deformed configurationx'neighbor particle for a given point x in deformed configurationx'neighbor particle for a given point X in the reference configuration δ radius of one horizon e_{ji} strain tensor in the bond ξ_{ij} θ_{jiko} conjugated bond angle in the deformed configuration δ radius of one horizon e_{jiko} conjugated bond angle in the deformed configuration δ_{ij} radius of strain energy micro θ_{jiko} conjugated bond angle in the deformed	Hx	horizon of a given material point X
KDurk elastic modulus n_{jik} moment vector density due to a pair of conjugated bonds s_n normal bond stretch $u(X)$ displacement vectors of the material point X $u(X)$ velocity vectors of the material point X $u(X)$ velocity vectors of the material point X $u(X)$ acceleration vectors of the material point X w scalar-valued micro-potential function w_1 normal stretch strain energy micro-potential due to a pair of conjugated bonds w_q rotation Strain energy function w_q critical strain energy function w_q critical strain energy density W^{PD} macro-elastic stretch strain energy density W^{PD} macro-elastic stretch strain energy density w_i notation strain energy density W^{PD} macro-elastic stretch strain energy density x location of a material point in the formed configuration x' neighbor particle for a given point x in deformed configuration x' neighbor particle for a given point x in the reference configuration δ_i radius of one horizon e_{ij} strain tensor in the bond ξ_{ij} ϕ_{jkk0} conjugated bond angle in the deformed configuration δ_i radius of subors ati	I	identity tensor
m_{jk} Indument vector density due to a pair of conjugated bonds s_n normal bond stretch s_n normal bond stretch $u(X)$ displacement vectors of the material point X $u(X)$ velocity vectors of the material point X $u(X)$ acceleration vectors of the material point X $u(X)$ acceleration vectors of the material point X w scalar-valued micro-potential function w_{l} normal stretch strain energy micro-potential w_{l} rotation Strain energy function w_{c} critical strain energy potential in the bond W^{c} strain energy density in classical elastic mechanics W^{PD} macro-elastic strain energy density W^{PD} macro-elastic stretch strain energy density W^{PD} macro-elastic rotation strain energy density W^{PD} macro-elastic rotation strain energy density W^{PD} macro-elastic rotation strain energy density w_{j} neighbor particle for a given point x in deformed configuration x' neighbor particle for a given point x in the reference configuration x' neighbor particle for a given point x in the reference configuration δ radius of one horizon e_{ij} strain tensor in the bond ξ_{ij} θ_{ijk0} conjugated bond angle in the reference configuration δ_{ij} rotation negle of conjugated bonds in the deformed configuration δ_{ijk0} conjugated bond angle in the reference configuration δ_{ijk0} conjugated bond angle in the reference configuration </th <th>K</th> <th>buik elastic modulus</th>	K	buik elastic modulus
bound stretch u(X) displacement vectors of the material point X u(X) displacement vectors of the material point X u(X) acceleration vectors of the material point X w scalar-valued micro-potential point X w scalar-valued micro-potential function w _t normal stretch strain energy micro-potential w _g rotation Strain energy micro-potential due to a pair of conjugated bonds w _t critical strain energy function w _c critical strain energy function w _c critical strain energy density in classical elastic mechanics W ^{PD} macro-elastic strain energy density W ^{PD} macro-elastic strain energy density W ^{PD} macro-elastic strain energy density X location of a material point in the formed configuration X' neighbor particle for a given point x in deformed configuration X' neighbor particle for a given point X in the reference configuration A' neighbor particle for a given point X in the reference configuration A' neighbor particle for a given point X in the reference configuration A' neighbor particle for a given point X in the reference configuration A' neighbor particle for a given point X in the reference configuration A' neighbor particle for a given point X in the reference configuration A' neighbor particle for a given point X in the reference configuration A' neighbor particle for a given point X in the reference configuration A' neighbor particle for a given point X in the reference configuration A' notation angle of conjugated bonds in the deformed configuration A' rotation angle of conjugated bonds in the deformed configuration A' rotation resistance stiffness μ scalar factor representing the broken of bond V Poisson's ratio ξ bond vector in the reference configuration η relative displacement vector between two interacting material points ρ material density u unit orientation vector of the bond w unit orientation vector of the bond w unit orientation vector of the bond	m_{jik}	hand detected density due to a pair of conjugated bonds
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	S	porta stretch
dixusplationuiXvelocity vectors of the material point XuiXacceleration vectors of the material point Xwscalar-valued micro-potential functionw_Inormal stretch strain energy micro-potentialw_grotation Strain energy functionw_gcritical strain energy functionw_ccritical strain energy density in classical elastic mechanicsWP0macro-elastic strain energy densityWP0macro-elastic rotation strain energy densityWP0macro-elastic rotation strain energy densityWp0macro-elastic rotation strain energy densityXlocation of a material point x in deformed configurationXneighbor particle for a given point X in the reference configurationXneighbor particle for a given point X in the reference configuration δ_i radius of one horizon ε_{ij} strain tensor in the bond ξ_{ij} θ_{jiko} conjugated bond angle in the deformed configuration δ_i radius of conjugated bond angle in the deformed configuration δ_{jik} rotation angle of conjugated bonds in the deformed configuration θ_{jik} rotation angle of conjugated bond sin the deformed configuration ϕ_{ijk} rotation representing the broken of bond v poisson's ratio ξ bond vector in the reference configuration ϕ_{ijk} rotation representing the broken of bond v poisson's ratio ξ bond vector in the reference configuration ϕ_{ijk} rotation representing t	S_n	displacement vectors of the material point X
$u(\mathbf{X})$ acceleration vectors of the material point \mathbf{X} w scalar-valued micro-potential function w_{μ} normal stretch strain energy micro-potential w_{μ} rotation Strain energy micro-potential due to a pair of conjugated bonds w_{ξ} micro-potential energy function w_{ϵ} critical strain energy density in classical elastic mechanics W^{PD} macro-elastic strain energy density W^{PD} macro-elastic strain energy density W^{PD} macro-elastic rotation strain energy density X' location of a material point in the formed configuration X' neighbor particle for a given point X in the reference configuration δ radius of one horizon δ_{ij} strain tensor in the bond ξ_{ij} ϕ_{jiko} conjugated bond angle in the reference configuration δ_{jik} conjugated bond angle in the deformed configuration δ_{jik} rotation angle of conjugated bond ϕ_{jiko} scalar factor representing the	$\mathbf{u}(\mathbf{X})$ $\mathbf{u}(\mathbf{X})$	velocity vectors of the material point \mathbf{X}
W_{i} scalar-valued micro-potential function w_{l} normal stretch strain energy micro-potential w_{ℓ} rotation Strain energy micro-potential due to a pair of conjugated bonds w_{ξ} micro-potential energy function w_{c} critical strain energy potential in the bond W^{PO} macro-elastic strain energy density W^{PO} macro-elastic rotation strain energy density W^{PO} macro-elastic rotation strain energy density W^{PO} macro-elastic rotation strain energy density X' location of a material point in deformed configuration X' neighbor particle for a given point x in deformed configuration X' neighbor particle for a given point x in the reference configuration δ radius of one horizon ε_{ij} strain tensor in the bond ξ_{ij} θ_{jiko} conjugated bond angle in the reference configuration δ_{ij} conjugated bond angle in the deformed configuration δ_{ijk} rotation representing the broken of bond ψ Poisson's ratio ξ bond vector in the reference configuration η relative displacement vector between two interacting material points ρ material density χ unit orientation vector of the bond ψ unit orientation vector of the conjugated bond	ü(X)	acceleration vectors of the material point X
w_l normal stretch strain energy micro-potential w_{β} rotation Strain energy micro-potential due to a pair of conjugated bonds w_{ϕ} micro-potential energy function w_c critical strain energy potential in the bond w_c strain energy density in classical elastic mechanics W^{PD} macro-elastic strain energy density W^{PD} macro-elastic stretch strain energy density W^{PD} macro-elastic rotation strain energy density W_p^{PD} macro-elastic rotation strain energy density w_{μ}^{*} location of a material point in deformed configuration x' neighbor particle for a given point x in deformed configuration x' neighbor particle for a given point x in the reference configuration δ radius of one horizon ε_{ij} strain tensor in the bond ξ_{ij} θ_{jik0} conjugated bond angle in the reference configuration δ_{ik} rotation angle of conjugated bonds in the deformed configuration δ_{ik} rotation angle of conjugated bonds in the deformed configuration θ_{jik0} conjugated bond angle in the reference configuration δ_{ik} rotation angle of conjugated bonds in the deformed configuration δ_{ik} rotation resistance stiffness μ scalar factor representing the broken of bond v Poisson's ratio ξ bond vector in the reference configuration σ_{ik} unit orientation vector of the bond ψ unit orientation vector of the bond ψ unit orientation vector of	w	scalar-valued micro-potential function
w_{β} rotation Strain energy micro-potential due to a pair of conjugated bonds w_{ε} micro-potential energy function w_{ε} critical strain energy potential in the bond W^{C} strain energy density in classical elastic mechanics W^{PD} macro-elastic strain energy density W^{PD} macro-elastic stretch strain energy density W^{PD}_{μ} macro-elastic rotation strain energy density X location of a material point in deformed configuration X' neighbor particle for a given point X in deformed configuration X' neighbor particle for a given point X in the reference configuration δ radius of one horizon ε_{ij} strain tensor in the bond ξ_{ij} θ_{jik0} conjugated bond angle in the reference configuration δ_{ijk} conjugated bond angle in the deformed configuration θ_{jik} conjugated bond angle in the deformed configuration θ_{jik} scalar factor representing the broken of bond ν Poisson's ratio ξ bond vector in the reference configuration η relative displacement vector between two interacting material points ρ material density χ unit orientation vector of the bond ψ unit orientation vector of the conjugated bond	W	normal stretch strain energy micro-potential
w_{ξ} micro-potential energy function w_{c} critical strain energy density in classical elastic mechanics W^{PD} macro-elastic strain energy density W^{PD} macro-elastic strain energy density W^{PD} macro-elastic stretch strain energy density W^{PD} macro-elastic rotation strain energy density W^{PD} macro-elastic rotation strain energy density X' location of a material point in deformed configuration x' neighbor particle for a given point x in deformed configuration X' neighbor particle for a given point x in the reference configuration δ radius of one horizon ε_{ij} strain tensor in the bond ξ_{ij} θ_{jik0} conjugated bond angle in the reference configuration ϕ_{jik0} rotation angle of conjugated bonds in the deformed configuration λ_t rotation angle of conjugated bonds in the deformed configuration ϕ_{jik0} rotation resistance stiffness μ scalar factor representing the broken of bond ν Poisson's ratio ξ bond vector in the reference configuration η relative displacement vector between two interacting material points ρ material density χ unit orientation vector of the bond ψ unit orientation vector of the conjugated bond	w_{β}	rotation Strain energy micro-potential due to a pair of conjugated bonds
w_c critical strain energy potential in the bond W^c strain energy density in classical elastic mechanics W^{PD} macro-elastic strain energy density W_p^{PD} macro-elastic stretch strain energy density W_p^{PD} macro-elastic rotation strain energy density W_p^{PD} macro-elastic rotation strain energy density X location of a material point in deformed configuration X' neighbor particle for a given point x in deformed configuration X' neighbor particle for a given point x in the reference configuration X' neighbor particle for a given point X in the reference configuration δ radius of one horizon δ_{ij} strain tensor in the bond ξ_{ij} θ_{jiko} conjugated bond angle in the reference configuration θ_{jik} conjugated bond angle in the deformed configuration θ_{jik} rotation angle of conjugated bonds in the deformed configuration δ_t rotation resistance stiffness μ scalar factor representing the broken of bond ν Poisson's ratio ξ bond vector in the reference configuration η relative displacement vector between two interacting material points ρ material density μ unit orientation vector of the bond ψ unit orientation vector of the conjugated bond	W_{ξ}	micro-potential energy function
W^{c} strain energy density in classical elastic mechanics W^{PD} macro-elastic strain energy density W^{PD}_{pD} macro-elastic stretch strain energy density W^{PD}_{pD} macro-elastic rotation strain energy density x location of a material point in deformed configuration x' neighbor particle for a given point x in deformed configuration X' neighbor particle for a given point x in the reference configuration X' neighbor particle for a given point x in the reference configuration X' neighbor particle for a given point X in the reference configuration δ' radius of one horizon ε_{ij} strain tensor in the bond ξ_{ij} θ_{jiko} conjugated bond angle in the reference configuration θ_{jiko} conjugated bond angle in the deformed configuration Θ_{jik} rotation angle of conjugated bonds in the deformed configuration ϕ_{jik} scalar factor representing the broken of bond v Poisson's ratio ξ bond vector in the reference configuration η' relative displacement vector between two interacting material points ρ material density χ' unit orientation vector of the bond ψ' unit orientation vector of the conjugated bond	Wc	critical strain energy potential in the bond
W^{PD} macro-elastic strain energy density W^{PD}_{β} macro-elastic stretch strain energy density W^{PD}_{β} macro-elastic rotation strain energy density \mathbf{x} location of a material point in deformed configuration \mathbf{x}' neighbor particle for a given point \mathbf{x} in deformed configuration \mathbf{x}' neighbor particle for a given point \mathbf{x} in the reference configuration \mathbf{X}' neighbor particle for a given point \mathbf{X} in the reference configuration \mathbf{X}' neighbor particle for a given point \mathbf{X} in the reference configuration δ radius of one horizon ε_{ij} strain tensor in the bond ξ_{ij} θ_{jiko} conjugated bond angle in the reference configuration θ_{jik} conjugated bond angle in the deformed configuration Θ_{jik} rotation angle of conjugated bonds in the deformed configuration λ_t rotation resistance stiffness μ scalar factor representing the broken of bond ν Poisson's ratio ξ bond vector in the reference configuration η relative displacement vector between two interacting material points ρ material density χ unit orientation vector of the bond ψ' unit orientation vector of the conjugated bond	W^{c}	strain energy density in classical elastic mechanics
$ \begin{array}{ll} W_{\beta}^{1D} & \text{macro-elastic stretch strain energy density} \\ W_{\beta}^{DD} & \text{macro-elastic rotation strain energy density} \\ \textbf{x} & \text{location of a material point in the formed configuration} \\ \textbf{x}' & \text{neighbor particle for a given point } \textbf{x} & \text{in deformed configuration} \\ \textbf{X} & \text{location of a material point in the reference configuration} \\ \textbf{X} & \text{neighbor particle for a given point } \textbf{X} & \text{in the reference configuration} \\ \textbf{X} & \text{neighbor particle for a given point } \textbf{X} & \text{in the reference configuration} \\ \textbf{X} & \text{neighbor particle for a given point } \textbf{X} & \text{in the reference configuration} \\ \textbf{X} & \text{neighbor particle for a given point } \textbf{X} & \text{in the reference configuration} \\ \textbf{X} & \text{neighbor particle for a given point } \textbf{X} & \text{in the reference configuration} \\ \textbf{X} & \text{neighbor particle bond angle in the reference configuration} \\ \textbf{X} & \text{conjugated bond angle in the reference configuration} \\ \textbf{X} & \text{conjugated bond angle in the deformed configuration} \\ \textbf{Y} & \text{rotation angle of conjugated bonds in the deformed configuration} \\ \textbf{Y} & \text{rotation resistance stiffness} \\ \mu & \text{scalar factor representing the broken of bond} \\ \textbf{V} & \text{Poisson's ratio} \\ \textbf{\xi} & \text{bond vector in the reference configuration} \\ \textbf{Y} & \text{relative displacement vector between two interacting material points} \\ \textbf{\rho} & \text{material density} \\ \textbf{Y} & \text{unit orientation vector of the bond} \\ \boldsymbol{\psi} & \text{unit orientation vector of the conjugated bond} \\ \end{array}$	W^{PD}	macro-elastic strain energy density
W_{jb}^{o} macro-elastic rotation strain energy density \mathbf{x} location of a material point in deformed configuration \mathbf{x}' neighbor particle for a given point \mathbf{x} in deformed configuration \mathbf{X}' location of a material point in the reference configuration \mathbf{X}' neighbor particle for a given point \mathbf{X} in the reference configuration δ' radius of one horizon ε_{ij} strain tensor in the bond ξ_{ij} θ_{jiko} conjugated bond angle in the reference configuration θ_{jik} conjugated bond angle in the deformed configuration Θ_{jik} rotation angle of conjugated bonds in the deformed configuration λ_t rotation resistance stiffness μ scalar factor representing the broken of bond v Poisson's ratio ξ bond vector in the reference configuration η relative displacement vector between two interacting material points ρ material density χ unit orientation vector of the bond ψ unit orientation vector of the conjugated bond	W_l^{PD}	macro-elastic stretch strain energy density
\mathbf{x} Indication of a material point in deformed configuration \mathbf{x}' neighbor particle for a given point \mathbf{x} in deformed configuration \mathbf{X}' location of a material point in the reference configuration \mathbf{X}' neighbor particle for a given point \mathbf{X} in the reference configuration δ radius of one horizon ε_{ij} strain tensor in the bond ξ_{ij} θ_{jik0} conjugated bond angle in the reference configuration θ_{jik0} conjugated bond angle in the deformed configuration Θ_{jik} rotation angle of conjugated bonds in the deformed configuration λ_t rotation resistance stiffness μ scalar factor representing the broken of bond ν Poisson's ratio ξ bond vector in the reference configuration η relative displacement vector between two interacting material points ρ material density χ unit orientation vector of the bond ψ unit orientation vector of the conjugated bond	W^{ID}_{β}	macro-elastic rotation strain energy density
XIntegration particle for a given point X in deformed configurationXlocation of a material point in the reference configuration X' neighbor particle for a given point X in the reference configuration δ radius of one horizon ε_{ij} strain tensor in the bond ξ_{ij} θ_{jik0} conjugated bond angle in the reference configuration θ_{jik} conjugated bond angle in the deformed configuration Θ_{jik} rotation angle of conjugated bonds in the deformed configuration ϕ_{jik} rotation angle of conjugated bonds in the deformed configuration ψ scalar factor representing the broken of bond v Poisson's ratio ξ bond vector in the reference configuration η relative displacement vector between two interacting material points ρ material density χ unit orientation vector of the bond ψ unit orientation vector of the conjugated bond	x x'	nocation of a material point in deformed configuration
\mathbf{X}' neighbor particle for a given point \mathbf{X} in the reference configuration δ radius of one horizon ε_{ij} strain tensor in the bond ξ_{ij} θ_{jik} conjugated bond angle in the reference configuration θ_{jik} conjugated bond angle in the deformed configuration Θ_{jik} rotation angle of conjugated bonds in the deformed configuration ϕ_{jik} rotation angle of conjugated bonds in the deformed configuration ψ rotation resistance stiffness μ scalar factor representing the broken of bond v Poisson's ratio ξ bond vector in the reference configuration η relative displacement vector between two interacting material points ρ material density χ unit orientation vector of the bond ψ unit orientation vector of the conjugated bond	x X	location of a material point in the reference configuration
$\begin{array}{llllllllllllllllllllllllllllllllllll$	x′	neighbor narticle for a given noint \mathbf{X} in the reference configuration
ε_{ij} strain tensor in the bond ξ_{ij} θ_{jik0} conjugated bond angle in the reference configuration θ_{jik} conjugated bond angle in the deformed configuration θ_{jik} rotation angle of conjugated bonds in the deformed configuration Δ_t rotation resistance stiffness μ scalar factor representing the broken of bond ν Poisson's ratio ξ bond vector in the reference configuration η relative displacement vector between two interacting material points ρ material density χ unit orientation vector of the bond ψ unit orientation vector of the conjugated bond	δ	radius of one horizon
$ \begin{array}{ll} \theta_{jik0} & \mbox{conjugated bond angle in the reference configuration} \\ \theta_{jik} & \mbox{conjugated bond angle in the deformed configuration} \\ \theta_{jik} & \mbox{rotation angle of conjugated bonds in the deformed configuration} \\ \lambda_t & \mbox{rotation resistance stiffness} \\ \mu & \mbox{scalar factor representing the broken of bond} \\ \nu & \mbox{Poisson's ratio} \\ \xi & \mbox{bond vector in the reference configuration} \\ \eta & \mbox{relative displacement vector between two interacting material points} \\ \rho & \mbox{material density} \\ \chi & \mbox{unit orientation vector of the bond} \\ \psi & \mbox{unit orientation vector of the conjugated bond} \end{array} $	Eii	strain tensor in the bond ξ_{ii}
θ_{jik} conjugated bond angle in the deformed configuration θ_{jik} rotation angle of conjugated bonds in the deformed configuration λ_t rotation resistance stiffness μ scalar factor representing the broken of bond v Poisson's ratio ξ bond vector in the reference configuration η relative displacement vector between two interacting material points ρ material density χ unit orientation vector of the bond ψ unit orientation vector of the conjugated bond	θ_{iik0}	conjugated bond angle in the reference configuration
	θ_{jik}	conjugated bond angle in the deformed configuration
λ_t rotation resistance stiffness μ scalar factor representing the broken of bond v Poisson's ratio ξ bond vector in the reference configuration η relative displacement vector between two interacting material points ρ material density χ unit orientation vector of the bond ψ unit orientation vector of the conjugated bond	$\hat{\Theta}_{jik}$	rotation angle of conjugated bonds in the deformed configuration
μ scalar factor representing the broken of bond v Poisson's ratio ξ bond vector in the reference configuration η relative displacement vector between two interacting material points ρ material density χ unit orientation vector of the bond ψ unit orientation vector of the conjugated bond	λ_t	rotation resistance stiffness
 ν Poisson's ratio ξ bond vector in the reference configuration η relative displacement vector between two interacting material points ρ material density χ unit orientation vector of the bond ψ unit orientation vector of the conjugated bond 	μ	scalar factor representing the broken of bond
 <i>ξ</i> bond vector in the reference configuration <i>η</i> relative displacement vector between two interacting material points <i>ρ</i> material density <i>χ</i> unit orientation vector of the bond <i>ψ</i> unit orientation vector of the conjugated bond 	v	Poisson's ratio
η relative displacement vector between two interacting material points ρ material density χ unit orientation vector of the bond ψ unit orientation vector of the conjugated bond	ξ	bond vector in the reference configuration
$\begin{array}{ll} \rho & \text{inaterial density} \\ \chi & \text{unit orientation vector of the bond} \\ \psi & \text{unit orientation vector of the conjugated bond} \end{array}$	η	relative displacement vector between two interacting material points
ψ unit orientation vector of the conjugated bond	ρ	Induction definition vector of the bond
	K	unit orientation vector of the conjugated bond
	Ψ	

the particle positions. The visibility criterion or some modification of it were also proposed in the meshfree methods for cracking [13–16]. Ventura et al. [17] enriched the MLS base functions around the crack tip to model kinked and curve cracks.

Although these numerical methods have been successfully applied to simulate the fracture problems, theories of these methods are in the framework of continuum mechanics, whose governing equations of motion are based on partial derivatives with respect to the spatial coordinates. The assumption of continuity in continuum mechanics is inherently insufficient for modeling cracks as partial derivatives are undefined along the crack faces where the displacement field is discontinuous. Therefore, some computation methods involving displacement gradients or higher-order spatial derivatives in a domain containing a crack must remove the discontinuous displacement field by redefining the discretized body so that the crack lies on the boundary or by using other techniques for evaluating the spatial derivatives on crack surfaces [9,18,19]. However, the peridynamic formulation eliminates the spatial derivatives altogether by solely depending on an integral formulation of the force acting at a continuum point, resulting in equilibrium equations that are valid everywhere in the body [20].

Please cite this article in press as: Zhou X et al. A novel conjugated bond linear elastic model in bond-based peridynamics for fracture problems under dynamic loads. Engng Fract Mech (2017), http://dx.doi.org/10.1016/j.engfracmech.2017.07.031

2

Download English Version:

https://daneshyari.com/en/article/7169195

Download Persian Version:

https://daneshyari.com/article/7169195

Daneshyari.com