ARTICLE IN PRESS

Engineering Fracture Mechanics xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

Review

Analytical flaw assessment

U. Zerbst*, M. Madia

Bundesanstalt für Materialforschung und -prüfung (BAM), Division 9.1, D-12205 Berlin, Germany

ARTICLE INFO

Article history: Received 5 October 2017 Received in revised form 4 December 2017 Accepted 4 December 2017 Available online xxxx

Keywords:
Monotonic and cyclic crack driving force
Secondary stresses
Strength mismatch
Constraint
Crack closure
R-curve analyses

ABSTRACT

The paper provides a review on analytical flaw assessment methods with the focus on fracture under monotonic loading and fatigue crack propagation. The first topic comprises linear elastic as well as elastic-plastic fracture mechanics approaches. It essentially follows their historical development. Topics which are separately discussed are reference/limit loads, the treatment of secondary stresses, strength mismatch, constraint, unstable crack propagation (monotonic R-curve analyses) and statistical aspects. With respect to fatigue crack propagation the analytical treatment of crack closure and constraint and the determination of the cyclic elastic-plastic crack driving force is discussed. Finally, cyclic R-curve analyses are briefly addressed.

© 2017 Elsevier Ltd. All rights reserved.

Contents

1.	Introduction: the need for analytical flaw assessment methods				
2.				00	
	2.1.	Linear elastic deformation: stress intensity factor		00	
	2.2.	Elastic-	plastic deformation	00	
		2.2.1.	Deformation behavior and crack driving force	00	
		2.2.2.	Plastic zone corrected K factor.	00	
		2.2.3.	Strip yield models, general failure law, two parameter concepts and early failure assessment diagram (FAD) .	00	
		2.2.4.	Correlating the crack driving force with the local strain: the TWI design curve approach	00	
		2.2.5.	Alternative design curve approaches	00	
		2.2.6.	Engineering treatment model (ETM).	00	
		2.2.7.	Approaches based on influence functions for fully plastic J solutions (EPRI type solutions)	00	
		2.2.8.	Approaches based on the reference stress method	00	
		2.2.9.	Reference load, limit load, reference yield stress	00	
		2.2.10.	Secondary stresses	00	
		2.2.11.	Strength mis-match	00	
		2.2.12.	Constraint	00	
		2.2.13.	Assessment against stable and unstable crack initiation	00	
		2.2.14.	Conservatism and probabilistic analysis		
3.	Cyclic	loading		00	
	3.1.	0 3	cle long fatigue crack propagation, crack closure and constraint	00	
	3 2	LOW CV	cle and short fatigue crack propagation	በበ	

E-mail address: uwe.zerbst@bam.de (U. Zerbst).

https://doi.org/10.1016/j.engfracmech.2017.12.002 0013-7944/© 2017 Elsevier Ltd. All rights reserved.

Please cite this article in press as: Zerbst U, Madia M. Analytical flaw assessment. Engng Fract Mech (2017), https://doi.org/10.1016/j.engfracmech.2017.12.002

^{*} Corresponding author.

U. Zerbst, M. Madia/Engineering Fracture Mechanics xxx (2017) xxx-xxx

	3.2.1.	Elastic-plastic cyclic crack driving force	00
	3.2.2.	Cyclic R-curve analysis	00
4.	Summary		00
	References		00

Nomenclature crack length (crack depth for surface cracks) a plastic zone corrected crack length $a + r_p$ (Section 2.2.2) aeff initial crack depth (for cyclic fracture mechanics analysis; Fig. 51) ai initial crack depth (for monotonic fracture mechanics analysis; Fig. 11) a٥ El Haddad parameter, Eq. (185) a_0 correction term for modified El Haddad's model, Eqs. (189) and (191) a* crack aspect ratio a/c half crack length at surface (semi-elliptical crack) c Ē half length of an equivalent through-thickness crack (design curve) C. n fit parameters of the da/dN- Δ K curve in the Paris regime d length of plastic strip (Dugdale model, Section 2.2.3) coefficient (HRR field solution) d_n da/dN fatigue crack propagation rate Ε modulus of elasticity (Young's modulus) E'= E for plane stress and $E/(1 - v^2)$ for plane strain conditions f crack closure function of the NASGRO equation, Eq. (146) F_{Y} net section yield load (general) F_Y of base plate material (weldments) F_{YB} equivalent strength mis-match corrected F_Y F_{YM} F_Y of weld metal (weldments) F_{YW} plasticity correction function (monotonic loading, reference stress method) $f(L_r)$ $f(\Delta L_r)$ plasticity correction function (cyclic loading) reserve factor (fracture resistance) in the FAD approach, Eq. (137) F^{σ} reserve factor (yield strength) in the FAD approach, Eq. (138) G_{Y} (elastic) energy release rate at the unset of general yield (Eqs. (21)–(28)) influence functions (EPRI scheme, Section 2.2.7) for I and δ h_1, h_2 Η width or half width of the weld strip (strength mismatch consideration) J J-integral (monotonic loading) critical I-integral J_c elastic component of the J-integral Ĭe J_i , $J_{0.2/BL}$ resistance against stable crack initiation (monotonic loading) plastic component of the J-integral $J_{p} \\ J^{s}$ I-integral due to secondary stresses J_{Y} I-integral at the onset of general yield stress intensity factor (K-factor) $K_{\rm eff}$ K^J plastic zone corrected K factor (Section 2.2.2) K factor formally derived from J-integral K_I^S ligament yielding corrected K^J $\dot{K_{mat}}$ fracture resistance, monotonic loading (general) K_{mat}^c constraint-corrected K_{mat} (R6 routine; Eq. (130)) K_{max} maximum K-factor in a loading cycle (fatigue crack propagation) minimum K-factor in a loading cycle K_{min} K_{op} K-factor at crack opening (cyclic loading) K^p K factor due to primary stresses ordinate of the FAD diagram (= K/K_{mat}) K_r Ks K factor due to secondary stresses K-factor for mode-I-crack opening (normal to the crack faces) K_{I} fracture resistance of the material (small scale yielding conditions) K_{Ic} characteristic dimension (EPRI scheme) L L_r ligament yielding parameter for monotonic loading

Please cite this article in press as: Zerbst U, Madia M. Analytical flaw assessment. Engng Fract Mech (2017), https://doi.org/10.1016/j.engfracmech.2017.12.002

Download English Version:

https://daneshyari.com/en/article/7169285

Download Persian Version:

https://daneshyari.com/article/7169285

<u>Daneshyari.com</u>