Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

A cohesive zone framework for environmentally assisted fatigue

Susana del Busto^a, Covadonga Betegón^a, Emilio Martínez-Pañeda^{b,*}

^a Department of Construction and Manufacturing Engineering, University of Oviedo, Gijón 33203, Spain ^b Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

ARTICLE INFO

Article history: Received 6 February 2017 Received in revised form 14 May 2017 Accepted 16 May 2017 Available online 27 May 2017

Keywords: Hydrogen embrittlement Cohesive zone models Hydrogen diffusion Finite element analysis Fatigue crack growth

ABSTRACT

We present a compelling finite element framework to model hydrogen assisted fatigue by means of a hydrogen- and cycle-dependent cohesive zone formulation. The model builds upon: (i) appropriate environmental boundary conditions, (ii) a coupled mechanical and hydrogen diffusion response, driven by chemical potential gradients, (iii) a mechanical behavior characterized by finite deformation J2 plasticity, (iv) a phenomenological trapping model, (v) an irreversible cohesive zone formulation for fatigue, grounded on continuum damage mechanics, and (vi) a traction-separation law dependent on hydrogen coverage calculated from first principles. The computations show that the present scheme appropriately captures the main experimental trends; namely, the sensitivity of fatigue crack growth rates to the loading frequency and the environment. The role of yield strength, work hardening, and constraint conditions in enhancing crack growth rates as a function of the frequency is thoroughly investigated. The results reveal the need to incorporate additional sources of stress elevation, such as gradient-enhanced dislocation hardening, to attain a quantitative agreement with the experiments.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Metallic materials play a predominant role in structures and industrial components because of their strength, stiffness, toughness and tolerance of high temperatures. However, hydrogen has been known for over a hundred years to severely degrade the fracture resistance of advanced alloys, with cracking being observed in modern steels at one-tenth of the expected fracture toughness. With current engineering approaches being mainly empirical and highly conservative, there is a strong need to understand the mechanisms of such hydrogen-induced degradation and to develop mechanistic-based models able to reproduce the microstructure-dependent mechanical response at scales relevant to engineering practice.

Models based on the hydrogen enhanced decohesion (HEDE) mechanism have proven to capture the main experimental trends depicted by high-strength steels in aqueous solutions and hydrogen-containing gaseous environments [1]. The use of cohesive zone formulations is particularly appealing in this regard, as they constitute a suitable tool to characterize the sensitivity of the fracture energy to hydrogen coverage. The cohesive traction separation law can be derived from first principles quantum mechanics [2] or calibrated with experiments [3,4]. The statistical distribution of relevant microstructural features has also fostered the use of weakest-link approaches [5,6]. Very recently, Martínez-Pañeda et al. [7] integrated strain gradient plasticity simulations and electrochemical assessment of hydrogen solubility in Gerberich [8] model. The investigation of a Ni-Cu superalloy and a modern ultra-high-strength steel revealed an encouraging quantitative agreement with

* Corresponding author. E-mail address: mail@empaneda.com (E. Martínez-Pañeda).

http://dx.doi.org/10.1016/j.engfracmech.2017.05.021 0013-7944/© 2017 Elsevier Ltd. All rights reserved.

α compression penalty factor \overline{V}_H partial molar volume of hydrogen β_{B} number of lattice sites per solvent atom β_{B}^{0} Gibbs free energy difference A_n normal cohesive separation δ_n characteristic normal cohesive length δ_{Σ} accumulated cohesive length δ_{Σ} accumulated cohesive length C, m Paris law coefficients N, \mathcal{D}_{r} standard and effective diffusion coefficients N strain hardening exponent \mathcal{R} universal gas constant \mathcal{T} absolute temperature μ_{L} lattice chemical potential ϕ_n normal cohesive energy ρ density σ_{IL} cohesive endurance limit σ_{IL} normal cohesive energy ρ density σ_{IL} cohesive endurance limit σ_{IL} normal cohesive and rapping sites δ_{T} equivalent plastic strain σ_{IL} local field and nodal separation vectors \mathcal{L} elastoplastic constitutive matrix σ Cauchy strain tensor \mathcal{L} cohesive displacement-separation matrix \mathcal{R} rotation displacement separation matrix \mathcal{R} rotational matrix \mathcal{L} local displacement separation vectors \mathcal{L} local displacement vector \mathcal{L} local displacement vector \mathcal{L} local displacement vector \mathcal{L} local displacement vector \mathcal{L} global nodal displacem	Nomenclature		
\overline{V}_{H} partial molar volume of hydrogen β number of lattice sites per solvent atom β_{gb}^{0} Gibbs free energy difference A_n normal cohesive separation δ_n characteristic normal cohesive length δ_x accumulated cohesive length C,m Paris law coefficients D, D_c standard and effective diffusion coefficients N strain hardening exponent R universal gas constant T absolute temperature μ_L lattice chemical potential ϕ_n normal cohesive energy ρ density σ_T cohesive endurance limit σ_H hydrostatic stress σ_{rx} orcupancy of lattice and trapping sites ℓ_{n}, θ occupancy of lattice and trapping sites ℓ_{p} elastoplastic constitutive matrix σ Cauchy stress tensor \mathcal{L} elastoplastic constitutive matrix σ Gauchy stress tensor \mathcal{L} cohesive displacement-separation matrix \mathcal{L} local field and nodal separation matrix \mathcal{L} local displacement separation matrix \mathcal{L} <	α	compression penalty factor	
β number of lattice sites per solvent atom dg_0^b Gibbs free energy difference a_n normal cohesive separation δ_n characteristic normal cohesive length δ_{Σ} accumulated cohesive length δ_{Σ} accumulated cohesive length δ_{Σ} accumulated cohesive length D_r standard and effective diffusion coefficients N strain hardening exponent R universal gas constant T absolute temperature μ_t lattice chemical potential ϕ_n normal cohesive energy ρ density σ_f cohesive endurance limit σ_H hydrostatic stress σ_T cohesive endurance limit σ_H hydrogen coverage θ_L , θ_T occupancy of lattice and trapping sites δ_p equivalent plastic strain d , A local field and nodal separation vectors L elastoplastic constitutive matrix σ Cauchy strain tensor s Cauchy strain tensor B standard atrain-displacement vectors J hydrogen flux vector K_c cohesive internal force vector J hydrogen flux vector K_c cohesive traction matrix R rotational matrix T standard and effective cohesive traction vectors J hydrogen concentration I_r field and local nodal displacement vectors G cohesive traction in lattice and trapping sites c_q </th <th></th> <th></th>			
dg_b^0 Gibbs free energy difference d_n normal cohesive separation δ_n characteristic normal cohesive length $\delta_{\overline{z}}$ accumulated cohesive length C, m Paris law coefficients N, D_c standard and effective diffusion coefficients N strain hardening exponent R universal gas constant T absolute temperature μ_L lattice chemical potential ϕ_n normal cohesive energy ρ density σ_f cohesive endurance limit σ_H hydrostatic stress $\sigma_{\overline{Y}}$ initial yield stress $\sigma_{\overline{X}}$ occupancy of lattice and trapping sites δ_p equivalent plastic strain $A.A$ local field and nodal separation vectors \mathcal{L} elastoplastic constitutive matrix σ Cauchy strain tensor \mathcal{B}_c global cohesive displacement separation matrix \mathcal{J}_c cohesive internal force vector \mathcal{J}_c hydrogen flux vector \mathcal{K}_c cohesive tangent stiffness matrix \mathcal{R} rotational matrix \mathcal{R} rotational matrix \mathcal{R} rotational displacement vectors \mathcal{I}_a global cohesive traction vectors \mathcal{I}_c talin-dinital crack opening displacement \mathcal{L}_c tochesive tangent stiffness matrix \mathcal{R} rotational matrix \mathcal{R} rotational matrix \mathcal{R} rotational displacement vectors \mathcal{I}_c talin-dinitial crack open	β		
δ_{Σ} accumulated cohesive length δ_{Σ} accumulated cohesive length δ_{Σ} accumulated cohesive length D, D_e standard and effective diffusion coefficients N strain hardening exponent R universal gas constant T absolute temperature μ_{L} lattice chemical potential ϕ_n normal cohesive energy ρ density σ_{Γ} cohesive endurance limit σ_{H} hydrogen coverage σ_{V} initial yield stress σ_{W} occupancy of lattice and trapping sites b_{e} equivalent plastic strain A, \dot{A} local field and nodal separation vectors \mathcal{L} elastoplastic constitutive matrix σ Cauchy stress tensor \mathcal{E} global cohesive displacement -separation matrix \mathcal{F} cohesive internal force vector \mathcal{J} hydrogen flux vector \mathcal{K} cohesive tangent stiffness matrix \mathcal{I} cational matrix \mathcal{I} field and local displacement vectors \mathcal{J} if eld and local displacement vector $\mathcal{I}, \tilde{\mathcal{I}}$ standard strain-displacement vector $\mathcal{I}, \tilde{\mathcal{I}}$ local displacement vector $\mathcal{I}, \tilde{\mathcal{I}}$ standard displacement vectors \mathcal{I} if eld and local nodal displacement vectors \mathcal{I} global nodal displacement vectors \mathcal{I} field and local nodal displacement vectors \mathcal{I} field and local nodal displacement vectors \mathcal{I} g	Δg_{b}^{0}	Gibbs free energy difference	
δ_{Σ} accumulated cohesive length C, m Paris law coefficients P, D_c standard and effective diffusion coefficients N strain hardening exponent R universal gas constant T absolute temperature μ_t lattice chemical potential ϕ_n normal cohesive energy ρ_f cohesive endurance limit σ_H hydrostatic stress σ_{r} initial yield stress $\sigma_{max}, \sigma_{max,0}$ current and original cohesive strength θ_{h} hydrogen coverage $\theta_{i., \theta_T}$ cocupancy of lattice and trapping sites ε_p equivalent plastic strain A, \dot{A} local field and nodal separation vectors \mathcal{L} elastoplastic constitutive matrix σ Cauchy strain tensor ε global cohesive displacement-separation matrix B standard strain-displacement matrix f_c cohesive tangent stiffness matrix I local displacement-separation matrix R rotational matrix R rotational matrix R global nodal displacement vector I, \tilde{T} standard and effective cohesive traction vectors I_{J} ifeld and local nodal displacement vector R_c global nodal displacement vector R_c standard and effective cohesive traction vectors I_{J} field and local nodal displacement vectors I_{J} field and local nodal displacement vectors I_{J} field and local nodal displacement vector	-		
C, m Paris law coefficients $\mathcal{D}, \mathcal{D}_e$ standard and effective diffusion coefficients \mathcal{N} strain hardening exponent \mathcal{R} universal gas constant \mathcal{T} absolute temperature μ_i lattice chemical potential ϕ_n normal cohesive energy ρ density σ_f cohesive endurance limit σ_H hydrostatic stress σ_{v} initial yield stress $\sigma_{max}, \sigma_{max0}$ current and original cohesive strength θ_H hydrogen coverage θ_i, θ_T occupancy of lattice and trapping sites ε_p equivalent plastic strain d, \dot{A} local field and nodal separation vectors \mathcal{L} elastoplastic constitutive matrix σ Cauchy stress tensor \mathcal{E} global cohesive displacement-separation matrix B_c global cohesive displacement matrix f_c cohesive tangent stiffness matrix I local displacement-separation matrix R rotational matrix R rotational matrix I standard and effective cohesive traction vectors J hydrogen concentration I, \tilde{T} standard and displacement vector I, \tilde{T} standard and displacement vectors I global nodal displacement vectors I field and local nodal displacement vectors I if eld and local nodal displacement vectors I, \tilde{T} standard and effective cohesive traction vectors I, \tilde{T} standar	δ_n		
D, D_c standard and effective diffusion coefficients N strain hardening exponent R universal gas constant T absolute temperature μ_l lattice chemical potential ϕ_n normal cohesive energy ρ density σ_f cohesive endurance limit σ_H hydrostatic stress σ_{rx} initial yield stress $\sigma_{max}, \sigma_{max,0}$ current and original cohesive strength θ_H hydrogen coverage θ_L, θ_T occupancy of lattice and trapping sites e_p equivalent plastic strain A, \dot{A} local field and nodal separation vectors C elastoplastic constitutive matrix σ Cauchy stress tensor s cauchy strain tensor B_c global cohesive displacement-separation matrix B standard strain-displacement matrix f_c cohesive internal force vector J hydrogen flux vector K_c cohesive itangent stiffness matrix L local displacement-separation matrix R rotational displacement vectors u, \hat{u} field and local nodal displacement vectors u global nodal displacement vectors d_{r} specific heat capacity D_{r} hydrogen concentration f_{r} load frequency K_{r0} remote and reference s	-		
\mathcal{N} strain hardening exponent \mathcal{R} universal gas constant \mathcal{T} absolute temperature μ_t lattice chemical potential ϕ_n normal cohesive energy ρ density σ_f cohesive endurance limit σ_H hydrostatic stress σ_V initial yield stress σ_{max} , $\sigma_{max,0}$ current and original cohesive strength θ_H hydrogen coverage θ_L , θ_T occupancy of lattice and trapping sites ε_p equivalent plastic strain A, A local field and nodal separation vectors \mathcal{L} elastoplastic constitutive matrix σ Cauchy stress tensor ε Cauchy stress tensor ε Cauchy stress tensor ε Cauchy stress tensor ε cohesive internal force vector f_c cohesive internal force vector f_c cohesive internal force vector f_r standard strain-displacement matrix R rotational displacement vectors u, \hat{u}, \hat{u} field and local nodal displacement vectors u, \hat{u} field and local nodal displacement vectors f_c total hydrogen concentration in lattice and trapping sites c_q specific heat capacity D, b_c, D_m damage variable: total, cyclic and monotonic E <			
\mathcal{R} universal gas constant \mathcal{T} absolute temperature μ_{L} lattice chemical potential ϕ_{n} normal cohesive energy ρ density σ_{f} cohesive endurance limit σ_{H} hydrostatic stress σ_{V} initial yield stress $\sigma_{max}, \sigma_{max,0}$ current and original cohesive strength θ_{H} hydrogen coverage θ_{L}, θ_{T} occupancy of lattice and trapping sites ε_{p} equivalent plastic strain A, \tilde{A} local field and nodal separation vectors \mathcal{L} elastoplastic constitutive matrix σ Cauchy stress tensor ε Cauchy stress tensor ε cohesive displacement-separation matrix B_{c} global cohesive displacement matrix f_{c} cohesive internal force vector J hydrogen flux vector K_{c} cohesive tangent stiffness matrix L local displacement-separation matrix R rotational matrix K cohesive tangent stiffness matrix L local displacement vector U_{u}, \tilde{u} field and local nodal displacement vectors U global nodal displacement vector u, \tilde{u} field and local nodal displacement C_{c}, C_{T} hydrogen concentration $L_{c}, $			
\mathcal{T} absolute temperature μ_L lattice chemical potential ϕ_n normal cohesive energy ρ density σ_f cohesive endurance limit σ_{H} hydrostatic stress σ_{rr} initial yield stress $\sigma_{max}, \sigma_{max0}$ current and original cohesive strength θ_H hydrogen coverage θ_L, θ_T occupancy of lattice and trapping sites ε_p equivalent plastic strain A, \tilde{A} local field and nodal separation vectors \mathcal{L} elastoplastic constitutive matrix σ Cauchy stress tensor \mathcal{E} cauchy stress tensor \mathcal{E} colosive displacement-separation matrix \mathcal{B} standard strain-displacement matrix \mathcal{f}_c cohesive internal force vector \mathcal{f} hydrogen flux vector \mathcal{K}_c cohesive tangent stiffness matrix \mathcal{R} rotational matrix \mathcal{R} rotational matrix \mathcal{R} rotational matrix \mathcal{R} rotational and effective cohesive traction vectors \mathcal{U} global nodal displacement vector $\mathcal{I}, \tilde{\mathcal{I}}$ field and local nodal displacement vectors \mathcal{G}_q specific heat capacity \mathcal{D}, D_c, D_m damage variable: total, cyclic and monotonic \mathcal{E}_q specific heat capacity \mathcal{D}, D_c, D_m damage variable: total, cyclic and monotonic \mathcal{E}_q specific heat capacity \mathcal{D}, D_c, D_m damage variable: total, cyclic and monotonic \mathcal{F}_q			
μ_t lattice chemical potential ϕ_n normal cohesive energy ρ density σ_f cohesive endurance limit σ_H hydrostatic stress σ_Y initial yield stress $\sigma_{max}, \sigma_{max,0}$ current and original cohesive strength θ_H hydrogen coverage θ_L, θ_T occupancy of lattice and trapping sites e_p equivalent plastic strain A, \tilde{A} local field and nodal separation vectors \mathcal{L} elastoplastic constitutive matrix σ Cauchy strain tensor \mathcal{B}_c global cohesive displacement-separation matrix \mathcal{B} standard strain-displacement matrix \mathcal{f}_c cohesive internal force vector \mathcal{J}_c hydrogen flux vector \mathcal{K}_c cohesive tangent stiffness matrix \mathcal{I} local displacement-separation matrix \mathcal{R} rotational matrix \mathcal{I} external traction vector $\mathcal{I}, \tilde{\mathcal{I}}$ standard and effective cohesive traction vectors \mathcal{U} global nodal displacement vector $\mathcal{I}, \tilde{\mathcal{I}}$ field and local nodal displacement vectors \mathcal{I} damage variable: total, cyclic and monotonic \mathcal{L}_q specific heat capacity \mathcal{D}, D_c, D_m damage variable: total, cyclic and monotonic \mathcal{E} Young's modulus f load frequency \mathcal{K}, K_0 remote and reference stress intensity factor \mathcal{K}_T trap equilibrium constant \mathcal{N}_n number of cycles \mathcal{N}			
ϕ_n normal cohesive energy ρ density σ_f cohesive endurance limit σ_H hydrostatic stress σ_Y initial yield stress $\sigma_{max}, \sigma_{max0}$ current and original cohesive strength θ_H hydrogen coverage θ_L, θ_T occupancy of lattice and trapping sites ε_p equivalent plastic strain A, A local field and nodal separation vectors \mathcal{L} elastoplastic constitutive matrix σ Cauchy stress tensor \mathcal{E} global cohesive displacement-separation matrix \mathcal{B} standard strain-displacement matrix \mathcal{F}_c cohesive internal force vector \mathcal{J} hydrogen flux vector \mathcal{K}_c cohesive tangent stiffness matrix \mathcal{L} local displacement-separation matrix \mathcal{N} shape functions matrix \mathcal{R} rotational matrix \mathcal{I} standard and effective cohesive traction vectors \mathcal{J} ipdiogen concentration $\mathcal{I}, \tilde{\mathcal{I}}$ standard and effective cohesive traction vectors \mathcal{I} global nodal displacement vector $\mathcal{I}, \tilde{\mathcal{I}}$ field and local nodal displacement vectors \mathcal{I} u \mathcal{I}, \mathcal{I} hydrogen concentration \mathcal{L}, C_T hydrogen concentration in lattice and trapping sites \mathcal{L}_q specific heat capacity \mathcal{D}_D_c, D_m damage variable: total, cyclic and monotonic \mathcal{E} Young's modulus f load frequency \mathcal{K}_h remote			
ρ density σ_f cohesive endurance limit σ_H hydrostatic stress $\sigma_{\rm rx}$ initial yield stress $\sigma_{\rm max}$, $\sigma_{\rm max,0}$ current and original cohesive strength θ_H hydrogen coverage θ_L , θ_T occupancy of lattice and trapping sites ε_p equivalent plastic strain A, \tilde{A} local field and nodal separation vectors \mathcal{L} elastoplastic constitutive matrix σ Cauchy stress tensor ε global cohesive displacement-separation matrix B standard strain-displacement matrix f_c cohesive internal force vector J hydrogen flux vector K_c cohesive tangent stiffness matrix I local displacement-separation matrix N shape functions matrix R rotational matrix I global nodal displacement vector U global nodal displacement vector U global nodal displacement vectors U global nodal displacement vectors u field and local nodal displacement vectors u a c_{ack} length b, b_0 current and initial crack opening displacement C_L, C_T hydrogen concentration C_L, C_T hydrogen concentration in lattice and trapping sites c_q specific heat capacity D, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_0 remote and referenc	.,2		
σ_f cohesive endurance limit σ_H hydrostatic stress σ_Y initial yield stress σ_{Tax} , $\sigma_{max,0}$ current and original cohesive strength θ_H hydrogen coverage θ_L , θ_T occupancy of lattice and trapping sites ε_p equivalent plastic strain A, \tilde{A} local field and nodal separation vectors \mathcal{L} elastoplastic constitutive matrix σ Cauchy stress tensor ϵ Cauchy stress tensor ϵ Cauchy strain tensor B_c global cohesive displacement-separation matrix \mathbf{B} standard strain-displacement matrix f_c cohesive internal force vector \mathbf{J} hydrogen flux vector \mathbf{K}_c cohesive tangent stiffness matrix \mathbf{L} local displacement-separation matrix \mathbf{R} rotational matrix \mathbf{R} rotational matrix \mathbf{R} rotational matrix \mathbf{R} rotational displacement vector u, \hat{u} field and local nodal displacement vectors a crack length b, b_0 current and initial crack opening displacement C_1, C_7 hydrogen concentration in lattice and trapping sites c_q specific heat capacity D, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_0 remote and reference stress intensity factor K_7 trap equilibrium constant N number of cycles <t< th=""><th></th><th></th></t<>			
σ_{H} hydrostatic stress σ_{V} initial yield stress $\sigma_{\max,\sigma}$ or current and original cohesive strength θ_{H} hydrogen coverage $\theta_{U, \theta_{T}}$ occupancy of lattice and trapping sites ε_{p} equivalent plastic strain A, \tilde{A} local field and nodal separation vectors \mathcal{L} elastoplastic constitutive matrix σ Cauchy stress tensor ε Cauchy stress tensor ε Cauchy strain tensor B_{c} global cohesive displacement-separation matrix B standard strain-displacement matrix f_{c} cohesive internal force vector J hydrogen flux vector K_{c} cohesive internal force vector J hydrogen flux vector K_{c} cohesive tangent stiffness matrix L local displacement-separation matrix R rotational matrix R rotational matrix R rotational matrix t external traction vector T, \tilde{T} standard and effective cohesive traction vectors U global nodal displacement vector u, \tilde{u} field and local nodal displacement vectors u, \tilde{u} field and local nodal displacement vectors c_{c} specific heat capacity D, D_{c}, D_{m} damage variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_{0} remote and reference stress intensity factor K_{T} trap equilibrium constant N number of cycles N_{A} Avogadro's number N_{L}, N_{T} number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_{0} reference plastic length T elastic T-stress T_{n} normal cohesive traction U internal energy per unit mass V_{M} molar volume of the host lattice		5	
σ_Y initial yield stress $\sigma_{max,\sigma}$ current and original cohesive strength θ_H hydrogen coverage θ_L , θ_T occupancy of lattice and trapping sites ϵ_p equivalent plastic strain A, \tilde{A} local field and nodal separation vectors C elastoplastic constitutive matrix σ Cauchy stress tensor ϵ Cauchy strain tensor \mathbf{B} global cohesive displacement-separation matrix \mathbf{B} standard strain-displacement matrix \mathbf{f}_c cohesive internal force vector \mathbf{J} hydrogen flux vector \mathbf{K}_c cohesive tangent stiffness matrix \mathbf{L} local displacement-separation matrix \mathbf{N} shape functions matrix \mathbf{R} rotational displacement vector $\mathbf{U}, \hat{\mathbf{u}}$ field and local nodal displacement vectors \mathbf{U} global nodal displacement vector $\mathbf{u}, \hat{\mathbf{u}}$ field and local nodal displacement vectors \mathbf{a} crack length b, b_0 current and initial crack opening displacement C_1, C_T hydrogen concentration \mathbf{C}_1, C_T hydrogen concentration \mathbf{C}_1, C_7, D_m damage variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_0 remote and reference stress intensity factor K_T trap eq		hydrostatic stress	
θ_H hydrogen coverage θ_L , θ_T occupancy of lattice and trapping sites ε_p equivalent plastic strain A, \tilde{A} local field and nodal separation vectors \mathcal{L} elastoplastic constitutive matrix σ Cauchy stress tensor ε cauchy strain tensor B_c global cohesive displacement-separation matrix B standard strain-displacement matrix B_c cohesive internal force vector J hydrogen flux vector K_c cohesive tangent stiffness matrix L local displacement-separation matrix N shape functions matrix R rotational matrix t external traction vector I, \tilde{T} standard and effective cohesive traction vectors U global nodal displacement vector u, \tilde{u} field and local nodal displacement vectors u, \tilde{u} field and local nodal displacement vectors a crack length b, b_0 current and initial crack opening displacement C total hydrogen concentration C_L, C_T hydrogen concentration in lattice and trapping sites c_q specific heat capacity p, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_0 remote and reference stress intensity factor K_T rtap equilibrium constant N number of lattice and trapping sites per unit volume q heat flux per unit area <t< th=""><th>σ_Y</th><th></th></t<>	σ_Y		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\sigma_{ m max},\sigma_{ m max,0}$		
ε_p equivalent plastic strain A, \tilde{A} local field and nodal separation vectors C elastoplastic constitutive matrix σ Cauchy stress tensor ε Cauchy strain tensor B_c global cohesive displacement-separation matrix B standard strain-displacement matrix f_c cohesive internal force vector J hydrogen flux vector K_c cohesive tangent stiffness matrix L local displacement-separation matrix R rotational matrix R rotational matrix R rotational matrix t external traction vector T, \tilde{T} standard and effective cohesive traction vectors U global nodal displacement vector u, \tilde{u} field and local nodal displacement vectors a crack length b, b_0 current and initial crack opening displacement C total hydrogen concentration C_L, C_T hydrogen concentration C_L, C_T hydrogen concentration f load frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U in	θ_H		
\dot{A}, \tilde{A} local field and nodal separation vectors \mathcal{L} elastoplastic constitutive matrix σ Cauchy stress tensor ε Cauchy strain tensor \mathcal{B}_c global cohesive displacement-separation matrix \mathcal{B}_c global cohesive displacement matrix \mathcal{F}_c cohesive internal force vector \mathcal{J} hydrogen flux vector \mathcal{K}_c cohesive tangent stiffness matrix \mathcal{L} local displacement-separation matrix N shape functions matrix \mathcal{R} rotational matrix \mathcal{R} rotational matrix \mathcal{I} standard and effective cohesive traction vectors \mathcal{U} global nodal displacement vector $\mathcal{u}, \tilde{\mathcal{u}}$ field and local nodal displacement vectors u global nodal displacement vector $\mathcal{L}, \mathcal{L}_T$ hydrogen concentration $\mathcal{L}, \mathcal{L}_T$ hydrogen concentration $\mathcal{L}, \mathcal{L}_T$ hydrogen concentration $\mathcal{L}, \mathcal{L}_T$ hydrogen concentration $\mathcal{L}, \mathcal{L}_T$ hydrogen durate q load frequency $\mathcal{K}, \mathcal{K}_0$ remote and reference stress intensity factor<	θ_L, θ_T		
\mathcal{L} elastoplastic constitutive matrix σ Cauchy stress tensor ε Cauchy stress tensor ε Cauchy stress tensor \mathcal{B}_c global cohesive displacement-separation matrix \mathcal{B}_c cohesive internal force vector \mathcal{J} hydrogen flux vector \mathcal{K}_c cohesive tangent stiffness matrix \mathbf{L} local displacement-separation matrix \mathbf{N} shape functions matrix \mathbf{R} rotational matrix \mathbf{R} rotational matrix \mathbf{t} external traction vector $\mathbf{T}, \mathbf{\tilde{T}}$ standard and effective cohesive traction vectors \mathbf{U} global nodal displacement vector $\mathbf{u}, \mathbf{\tilde{u}}$ field and local nodal displacement vectors a crack length b, b_0 current and initial crack opening displacement C total hydrogen concentration C_L, C_T hydrogen concentration in lattice and trapping sites c_q specific heat capacity D, D_c, D_m daamge variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass	• ~		
σ Cauchy stress tensor ϵ Cauchy strain tensor B_c global cohesive displacement-separation matrix B standard strain-displacement matrix f_c cohesive internal force vector J hydrogen flux vector K_c cohesive tangent stiffness matrix L local displacement-separation matrix N shape functions matrix R rotational matrix t external traction vector T, \tilde{T} standard and effective cohesive traction vectors U global nodal displacement vector u, \tilde{u} field and local nodal displacement vectors a crack length b, b_0 current and initial crack opening displacement C total hydrogen concentration C_L, C_T hydrogen concentration in lattice and trapping sites c_q specific heat capacity D, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host	,		
ε Cauchy strain tensor B_c global cohesive displacement-separation matrix B standard strain-displacement matrix f_c cohesive internal force vector J hydrogen flux vector K_c cohesive tangent stiffness matrix L local displacement-separation matrix N shape functions matrix R rotational matrix t external traction vector T, \tilde{T} standard and effective cohesive traction vectors U global nodal displacement vector $u.\tilde{u}$ field and local nodal displacement vectors a crack length b, b_0 current and initial crack opening displacement C total hydrogen concentration C_1, C_T hydrogen concentration D, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice			
B_c global cohesive displacement-separation matrix B standard strain-displacement matrix f_c cohesive internal force vector J hydrogen flux vector K_c cohesive tangent stiffness matrix L local displacement-separation matrix N shape functions matrix R rotational matrix R rotational matrix t external traction vector T, \tilde{T} standard and effective cohesive traction vectors U global nodal displacement vector $u.\tilde{u}$ field and local nodal displacement vectors a crack length b, b_0 current and initial crack opening displacement C total hydrogen concentration C_L, C_T hydrogen concentration C_L, C_T hydrogen concentration f load frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice		-	
Bstandard strain-displacement matrix f_c cohesive internal force vectorJhydrogen flux vector K_c cohesive tangent stiffness matrixLlocal displacement-separation matrixNshape functions matrixRrotational matrixtexternal traction vector T, \tilde{T} standard and effective cohesive traction vectorsUglobal nodal displacement vector u, \tilde{u} field and local nodal displacement vectorsacrack lengthb, b_0 current and initial crack opening displacementCtotal hydrogen concentration C_L, C_T hydrogen concentration in lattice and trapping sites c_q specific heat capacity D, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulusfload frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constantNnumber of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volumeqheat flux per unit area R load ratio R_0 reference plastic lengthTelastic T-stress T_n normal cohesive tractionUinternal energy per unit mass V_M molar volume of the host lattice	_		
f_c cohesive internal force vector J hydrogen flux vector K_c cohesive tangent stiffness matrix L local displacement-separation matrix N shape functions matrix R rotational matrix t external traction vector T, \tilde{T} standard and effective cohesive traction vectors U global nodal displacement vector u, \tilde{u} field and local nodal displacement vectors a crack length b, b_0 current and initial crack opening displacement C total hydrogen concentration C_L, C_T hydrogen concentration in lattice and trapping sites c_q specific heat capacity D, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice	-		
Jhydrogen flux vector K_c cohesive tangent stiffness matrixLlocal displacement-separation matrixNshape functions matrixRrotational matrixtexternal traction vector T, \tilde{T} standard and effective cohesive traction vectorsUglobal nodal displacement vector u, \tilde{u} field and local nodal displacement vectorsacrack lengthb, b_0current and initial crack opening displacementCtotal hydrogen concentrationCL, C_T hydrogen concentration in lattice and trapping sites c_q specific heat capacity D, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulusfload frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constantNnumber of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volumeqheat flux per unit areaRload ratio R_0 reference plastic lengthTelastic T-stress T_n normal cohesive tractionUinternal energy per unit mass V_M molar volume of the host lattice			
K_c cohesive tangent stiffness matrix L local displacement-separation matrix N shape functions matrix R rotational matrix t external traction vector T, \tilde{T} standard and effective cohesive traction vectors U global nodal displacement vector u, \tilde{u} field and local nodal displacement vectors a crack length b, b_0 current and initial crack opening displacement C total hydrogen concentration C_L, C_T hydrogen concentration in lattice and trapping sites c_q specific heat capacity D, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice		hydrogen flux vector	
Nshape functions matrixRrotational matrixtexternal traction vector T, \tilde{T} standard and effective cohesive traction vectorsUglobal nodal displacement vector u, \tilde{u} field and local nodal displacement vectorsacrack length b, b_0 current and initial crack opening displacementCtotal hydrogen concentration C_L, C_T hydrogen concentration in lattice and trapping sites c_q specific heat capacity D, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulusfload frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volumeqheat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice	Kc		
R rotational matrix t external traction vector T, \tilde{T} standard and effective cohesive traction vectors U global nodal displacement vector u, \tilde{u} field and local nodal displacement vectors a crack length b, b_0 current and initial crack opening displacement C total hydrogen concentration C_L, C_T hydrogen concentration in lattice and trapping sites c_q specific heat capacity D, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice	L		
t external traction vector T, \tilde{T} standard and effective cohesive traction vectors U global nodal displacement vector u, \tilde{u} field and local nodal displacement vectors a crack length b, b_0 current and initial crack opening displacement C total hydrogen concentration C_L, C_T hydrogen concentration in lattice and trapping sites c_q specific heat capacity D, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice		*	
T, \tilde{T} standard and effective cohesive traction vectors U global nodal displacement vector u, \tilde{u} field and local nodal displacement vectors a crack length b, b_0 current and initial crack opening displacement C total hydrogen concentration C_L, C_T hydrogen concentration in lattice and trapping sites c_q specific heat capacity D, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice			
U global nodal displacement vector u, \tilde{u} field and local nodal displacement vectors a crack length b, b_0 current and initial crack opening displacement C total hydrogen concentration C_L, C_T hydrogen concentration in lattice and trapping sites c_q specific heat capacity D, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice	~		
u, \tilde{u} field and local nodal displacement vectors a crack length b, b_0 current and initial crack opening displacement C total hydrogen concentration C_L, C_T hydrogen concentration in lattice and trapping sites c_q specific heat capacity D, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice	/		
acrack length b, b_0 current and initial crack opening displacementCtotal hydrogen concentration C_L, C_T hydrogen concentration in lattice and trapping sites c_q specific heat capacity D, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice	~		
b, b_0 current and initial crack opening displacement C total hydrogen concentration C_L, C_T hydrogen concentration in lattice and trapping sites c_q specific heat capacity D, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice	,		
Ctotal hydrogen concentration C_L, C_T hydrogen concentration in lattice and trapping sites c_q specific heat capacity D, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice		•	
C_L, C_T hydrogen concentration in lattice and trapping sites c_q specific heat capacity D, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice	C		
D, D_c, D_m damage variable: total, cyclic and monotonic E Young's modulus f load frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice	C_L, C_T	hydrogen concentration in lattice and trapping sites	
E Young's modulus f load frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice			
fload frequency K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice			
K, K_0 remote and reference stress intensity factor K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice			
K_T trap equilibrium constant N number of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice	•		
Nnumber of cycles N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volumeqheat flux per unit areaRload ratio R_0 reference plastic lengthTelastic T-stress T_n normal cohesive tractionUinternal energy per unit mass V_M molar volume of the host lattice			
N_A Avogadro's number N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice	-		
N_L, N_T number of lattice and trapping sites per unit volume q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice			
q heat flux per unit area R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice			
R load ratio R_0 reference plastic length T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice			
T elastic T-stress T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice		•	
T_n normal cohesive traction U internal energy per unit mass V_M molar volume of the host lattice	R ₀	reference plastic length	
Uinternal energy per unit massV_Mmolar volume of the host lattice		elastic T-stress	
V_M molar volume of the host lattice			
<i>w_B</i> trap binding energy			
	VV B	nap omonig energy	

Download English Version:

https://daneshyari.com/en/article/7169390

Download Persian Version:

https://daneshyari.com/article/7169390

Daneshyari.com