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a b s t r a c t

Starting with the macroscopic energy balance and the macroscopic entropy inequality, a
lower bound is derived for the critical strain energy at which an isothermal composite
or multiphase material fractures or fails. It relates the work done on the body, or the strain
energy created in the body, to the new fracture surface area created. No assumption is
made about the number or configurations of these fractures. Using previously published
experimental observations by others, seven examples are developed to demonstrate how
this inequality can be used to calculate bounds that can be compared with experimental
observations. Six involve carbon fiber/epoxy aerospace laminates, and one an oil/gas pro-
ducing sandstone. No adjustable parameters or history matching are employed.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

There are several recent reviews of fracture [1–6]. For this reason, we give only a limited discussion of the literature. We
will focus our attention here on the use of the second law (entropy inequality) in discussions of fracture.

Griffith [7] is widely viewed as the father of modern fracture mechanics. His starting point was the theorem of minimum
energy [8, Exercise 4.10.3-2], which assumes that a body is at equilibrium. Broutman and Koboyashi [9] (see also Anderson
[6]) note that ‘‘Griffith assumed the presence of very small cracks in the material and made use of Inglis’ calculation of stres-
ses by regarding the cracks as very flat elliptical holes. . . .In the case of a thin elastic plate (plane stress) with a very flat ellip-
tic crack . . .under uniaxial tension, Griffith’s assumptions lead to the famous Griffith equation . . ..” As we do in what follows,
Griffith assumed in addition that the body was isothermal, that the surface tension was a constant, and that a cusp was
formed at the fracture edge.

Working in the spirit of Gurtin [10], Slattery et al. [11] and Fu and Slattery [12] (see also [13,14]) did recognize interfacial
effects to find for a single-phase, single-component body undergoing mode I fracture that the rate at which work is done by
the body on the surroundings at the fracture edge, or the critical energy release rate, is

Gc � 4c ð1Þ

Here c is the thermodynamic surface tension in the fracture surface or, in effect, the force per unit length of line that each
fracture surface exerts on the fracture edge. We show in Appendix A that this result is not limited to mode I fractures.
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1.1. Macroscopic energy balance and macroscopic entropy inequality

The macroscopic balances have been discussed by many, perhaps most notably by [15]. Slattery et al. [8] included inter-
facial effects as well as the macroscopic entropy inequality. To our knowledge, there has been no previous discussion along
these lines for fracture.

2. Objective

Our objective is to develop a lower bound for the internal strain energy at which an isothermal composite or multiphase
body fractures (fails). We will make the following assumptions.

1. We will assume that fracture is a stochastic process and that the area of newly created fracture surface does not have an
experimentally repeatable value.

2. We will assume that the body has a uniform temperature. There is no mass transfer across the boundary of the body, and
the macroscopic mass balance is satisfied identically.

3. Following Slattery et al. [11], we will assume that the fracture forms a cusp at the curve representing the fracture edge.
4. We will neglect the effects of gravity.

We will make no explicit assumptions about material behavior. However, the material behavior is taken into account
through the critical energy release rate. Because we are using macroscopic relations, this will be the critical energy release
rate for a single phase representation of the multiphase body.

There are no assumptions made about the internal details of the multiphase body. For example we say nothing about the
layout of the fibers in a laminate. These internal details, however, do influence the critical energy release rate.

The ultimate justification of these assumptions will be in the agreement between the theory and the experimental data in
each of the seven examples of Section 4. Note also that in comparing theory with experiment we will use only parameters
from the literature; we will not use adjustable parameters or history matching.

Nomenclature

bA Helmholtz free energy per unit massbAðrÞ surface Helmholtz free energy per unit mass
b body force per unit volume
bðfeÞ body force per unit length of fracture edge
CðfeÞ fracture edge
Einput energy input
GIc critical energy release rate for a mode I fracture
KIc fracture toughness or stress intensity factor for a mode I fracture
n the unit normal to S that is outwardly directedbS entropy per unit massbSðrÞ surface entropy per unit mass
t timebU internal energy per unit massbU ðrÞ surface internal energy per unit mass
v velocity
vðrÞ surface velocity
vðfeÞ velocity of the fracture edge
dA area integration
ds line integration
dV volume integration
dðvÞ=dt the derivative with respect to time following a material particle
dðvðrÞÞ=dt the derivative with respect to time following a surface particle
c thermodynamic surface tension
m the unit vector that is normal to the fracture edge, tangent to all three interfaces, and outwardly directed with

respect to the body
q mass density
qðrÞ surface mass density
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