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a b s t r a c t

This publication discusses a material or configurational force approach based crack propa-
gation scheme for dynamic fracture, in which the formulation of the material forces is
derived from a Lagrangian density where inertia effects are taken into account. In dynam-
ics, the crack driving force can generally be much larger than in the static case. In order to
study the capability of the method, an algorithm based on the principle of local symmetry
(PLS) is introduced into an implicit solution scheme which requires an additional iterative
algorithm to seek for energy minimization. By other explicit approaches, it is not possible
to study the crack bifurcation phenomenon, which is well known in dynamic fracturing.
It is observed that many micro branches evolve from the main crack in case of fast crack

propagation. Thus, the energy flow into the main crack tip is divided between the main
crack and the micro-branches. To introduce the micro-cracking effect to the fracture tough-
ness, a fracture criterion as a function of the crack velocity is used in the model, in order to
represent realistically the resistance of the cracked structure. In conclusion, it is shown that
the proposed method based on the implicit description of energy minimization, is capable
of explaining the physics behind the branching phenomenon and it offers a mesh objective
solution for a structure even with a coarse mesh.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Newtonian force concept describes the relation between physical forces and deformations of particles in the physical
space suitable for engineering applications. However, in fracture mechanics, additional physical and mathematical concepts
due to the asymptotic behavior of stresses at the crack tip are necessary. Based on mechanics in the configurational space, a
concept of generalized thermodynamic driving forces acting on imperfections of crystals such as dislocations, foreign atoms
and grain boundaries is given by [1,2]. The material momentum balance equation with the divergence of Eshelby stresses can
be interpreted as a representation of the negative gradient of the Lagrangian density with respect to the position of an inho-
mogeneity in an elastic body, e.g. crack tip, in which the inertia effects are taken into account. When inertia effects are
excluded, this description coincides with the J-integral of [3] in a vectorial setting, where its tangential component with
respect to the crack surface represents the variation of the configurational changes. However, for the dynamic case, more
than one domain integral description is available in literature. In [4], the material force approach is developed within the
context of large strain. A general application for a finite element implementation of material forces is presented by [5–9],
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for elasticity and by [10–15] for plasticity and viscoelasticity. Furthermore, an r-adaptive approach for a brittle fracture pro-
cess in a linear elastic body is given by [16,17] using the material force approach. In addition, this formulation is discussed in
the context of an explicit solution for dynamically loaded structures in [18,19].

Unfortunately, the previous applications of the material force approach to fracture mechanics are mostly restricted to
quasi-static loading although a comprehensive study of various domain integrals in dynamic cases is available in literature,
see [20–22], among others. Although, the framework for calculations of the material forces at large strain problems with
inertia effects is given in [18,19], the applications in the literature are very limited in dynamic brittle fracture and the
reliability of the method is still under discussion. Since further studies are still necessary to investigate the features of

Nomenclature

X reference configuration of a material point
W global power of the body
Pint total internal strain energy in the body
Pext total external energy in the body
PK total kinetic energy in the body
C energy dissipated by the crack surface
a crack
Gc static fracture criterion
Gdyn
c dynamic fracture criterion

Kdyn stress intensity factor
_a explicit crack velocity
v lim velocity limiter for dynamic fracture criterion
a fracture criterion parameter
u displacement field
F deformation gradient
P first Piola–Kirchhoff stress tensor
_u velocity field
€u acceleration field
b0 body forces
t time
q density
W strain energy density
K kinetic energy density
L Lagrangian density
P pseudo-momentum
F nodal material force vector
FR nodal volume material force vector
F body nodal body material force vector
F sur nodal surface material force vector
N shape function
J J-integral in elastic fracture mechanics
ĴD; JD; JDL variants of J-integral in dynamic elastic fracture mechanics
K incremental size of the crack
e unit vector of crack kinking direction
/ crack kinking angle
T triangular objects
S line objects
N node objects
nS normal of a line object
UN tip

crack kinking direction equation
f r holding back force
kP regularization parameter
E;l; m;j material parameters
Cd dilatational wave speed
Cr Rayleigh wave speed.
rð�Þ gradient respect to material space
r � ð�Þ divergence respect to material space
ð�ÞT transpose of a tensor
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