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a b s t r a c t

An automatic crack propagation remeshing procedure using the polygon scaled boundary
FEM is presented. The remeshing algorithm, developed to model any arbitrary shape, is
simple yet flexible because only minimal changes are made to the global mesh in each step.
Fewer polygon elements are used to predict the final crack path with the algorithm as com-
pared to previous approaches. Two simple polygon optimisation methods which enable the
remeshing procedure to model crack propagation more stably are implemented. Four crack
propagation benchmarks are modelled to validate the developed method and demonstrate
its salient features.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fracture in brittle materials is an important issue in structural damage and failure. Modelling mixed-mode crack propa-
gation in this material, combined with linear elastic fracture mechanics (LEFM), is an active research field and considerable
efforts have been made in recent years. Studies are usually implemented within four broad frameworks, i.e. the finite ele-
ment method (FEM), the boundary element method (BEM) and two more recent numerical approaches: meshless methods
and extended FE methods.

Since the FEM was first used to model crack propagation in reinforced concrete beams by Ngo and Scordelis [1], it has
been the predominant numerical method for crack problems [2–4]. However, crack propagation modelling with the FEM
is still a challenging subject, because it usually requires both fine crack tip meshes [5,6] and sophisticated remeshing algo-
rithms during crack propagation [7,8] to accurately calculate fracture parameters such as stress intensity factors (SIFs). Var-
ious methods have been proposed to extend the application of the FEM, such as the superposition method [9], quarter-point
elements [10], and hybrid crack elements [11]. The extended FEM (XFEM) [12] and meshless methods [13] using nodal
enrichment techniques, which can model crack propagation without remeshing, have been proposed more recently as alter-
natives to tackle the difficulties faced by the FEM in crack propagation modelling. Serious crack propagation problems both
in statics and dynamics have been solved with these two methods [14–17]. However, fine meshes (in the case of XFEM) and
fine nodal distributions (in the case of meshless methods), are still needed, especially when the crack paths are unknown in
advance [18].

The BEM is a competitive alternative to FEM in crack propagation modelling because only the boundaries of the problem
domain are discretised to define the geometry and only new boundary elements need to be added to the crack tip during
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remeshing. Although the BEM has these appealing features, its requirement of fundamental solutions limits its applicability
considerably, generally to linear problems. Enormous research effort has sought to improve the existing BEM approach, with
new techniques evolving such as the dual boundary element method (DBEM) [19] and the dual reciprocity method [20], but
more exciting progress seems likely with enriched BEM methods [21].

The scaled boundary finite element method (SBFEM), is a semi-analytical method and was first developed by Wolf and
Song [22] in the 1990s. It not only combines the advantages of FEM and BEM, but also possesses key features to make crack
modelling more effective and efficient, and also has useful attributes such as the ease with which accurate SIFs can be
extracted directly from the semi-analytical solutions [23,24] without fine crack tip meshes or special elements. Due to these
attributes, the SBFEM has been successfully coupled with the BEM [25] and XFEM [26,27] for calculating parameters in frac-
ture mechanics. These advantages have also been exploited in modelling both static and dynamic crack propagation prob-
lems by developing a simple remeshing procedure based on LEFM [18,28]. The advantage of the remeshing procedure is
more significant when combined with cohesive interface finite elements (CIEs), a method named the FEM–SBFEM coupled
method [29–31], to model cracks in nonlinear fracture mechanics (NFM). However, for problems with arbitrary multiple
cracks in any arbitrary domain, the remeshing method is a little cumbersome because the subdomains may become so dis-
torted that not all the nodes are directly visible from the scaling centres (an issue discussed in detail later in this paper).

A more general implementation of the SBFEM, where subdomains are discretised with polygon elements, was proposed
by Ooi et al. [32,33] to overcome the problems described above. Polygon elements permit meshing of complex geometries
flexibly, and the method uses a very simple local remeshing algorithm which just makes minimal changes to the global mesh
by modelling the crack from one subdomain into an adjacent subdomain. However, the polygon mesh has to be refined in
order to calculate the crack path accurately, because the crack propagation length is determined by the average distance
from the vertices of the cracked subdomain to its scaling centre. Although a robust remeshing technique [34,35] was later
proposed by Song and colleagues, similar to the hybrid FEM–SBFEM [36,37], the background mesh in this method needs to be
stored and updated throughout the entire simulation, which makes it potentially computationally inefficient.

Recently, the polygon SBFEM was proved to be more accurate when compared with the conventional polygon FEM and
cell-based smoothed polygon FEM [38] and a scaled boundary polygon formulation was developed to model elasto-plastic
material responses in structures [39], which increases the application possibilities of the polygon SBFEM.

This study extends the simple remeshing algorithm developed in [18,28] to model polygon scaled boundary elements in
brittle materials with any arbitrary shape. This remeshing algorithm is augmented to enable the modelling of crack propa-
gation more stably and accurately. This paper is organised as follows: Section 2 briefly discusses the polygon SBFEM and its
procedures for computation of SIFs. Section 3 discusses the pre-processing module used to generate polygon elements based
on open-source Delaunay tessellation software. Section 4 addresses the remeshing algorithm and its improvement applied to
the polygon SBFEM. Section 5 demonstrates the application of the algorithm to three mixed-mode crack propagation exam-
ples and Section 6 summarises the major conclusions that can be drawn from this study.

2. Polygon scaled boundary finite element method

The basic concept of the SBFEM is illustrated in Fig. 1(a) and (b). Fig. 1(a) shows a typical domain of arbitrary shape mod-
elled by four subdomains, in which subdomain 1 contains a crack (named the cracked subdomain). Each subdomain has a
scaling centre, from which all the boundaries of this subdomain are visible. Only the boundaries of the subdomains are

Nomenclature

B1, B2 linear operator matrices of the SBFEM system
c integration constants of the SBFEM system
D elasticity matrix
E0, E1, E2 coefficient matrices of the SBFEM system
K global stiffness matrix
Ksi stiffness matrix of one subdomain
KI, KII model-I and model-II stress intensity factors
L0 distance between the crack tip and the boundary
N shape function
P equivalent nodal force
Psi equivalent nodal force of one subdomain
u displacement field
Da crack increment length
n, s local coordinate system of the SBFEM system
r, h polar coordinates
k diagonal matrix
u displacement vector of the SBFEM system
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