Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

The simulation of inelastic matrix strains in cementitious materials using micromechanical solutions

Robert Davies*, Anthony Jefferson

Cardiff School of Engineering, Cardiff University, Cardiff, Wales CF24 3AA, United Kingdom

ARTICLE INFO

Article history: Received 24 January 2014 Received in revised form 12 July 2014 Accepted 7 October 2014 Available online 16 October 2014

Keywords: Composite Cementitious Inelastic strain Matrix Micro-cracks

ABSTRACT

A new approach is described for simulating inelastic behaviour in the matrix component of a two-phase composite material. Quasi-isotropic distributed micro-cracking, accompanying volumetric matrix changes, is combined with anisotropic micro-cracking arising from directional loading. An exterior point Eshelby solution is used to obtain stress concentrations adjacent to inclusions. The accuracy of these solutions is assessed using a series of three dimensional finite element analyses. A set of stress/strain paths are considered to illustrate the model's characteristics. The model is then applied to the problem of autogenous shrinkage in a cementitious composite, giving results that compare favourably with experimental data.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Micromechanical models allow individual material properties, micro-cracking and inelastic behaviour to be modelled at the particle scale of a composite material. They also provide a means of linking the predicted behaviour to the macro-scale response. This paper describes a model for a two-phase composite material which has a matrix phase and inclusions. The particular focus is on simulating inelastic behaviour in the matrix phase alone [1]. Inelastic strains may derive from shrinkage, creep, micro-cracking, differential thermal expansion or ageing. These time dependent phenomena are particularly important when simulating cementitious composite materials such as concrete.

Neville et al. [41] reviewed a number of two-phase models for creep and shrinkage of concrete, including those of Hirsch [27], Counto [14] and England [21], in which the behaviour of the composite was derived from the properties of the aggregate and cement paste phases. A number of more recent models are based on multi-level schemes in which macro-scale stresses and strains are derived by up-scaling the behaviour at the micro-scale and below. Xi and Jennings [56] presented a multi-scale model for shrinkage in concrete and in cement paste that considered the behaviour from the nano to the meso-scale. Bernard et al. [8] described the inelastic strains from chemical shrinkage in cementitious composites with a multi-level model and Pichler et al. [45], also using a multi-level scheme, simulated early age autogenous shrinkage for the same type of cement based material. The latter model was further developed to include up-scaling of creep properties [44].

A two level multi-staged model was presented by Scheiner et al. [47] to describe creep in concrete in which the creep in cement hydrates was considered explicitly. These multi-scale models are particularly successful at simulating the development of strength during cement hydration [42]. The latter model has recently been employed in a combined experimental-numerical investigation of the micro-structure of hardened cement paste (hcp) which explored the importance of the

* Corresponding author.

E-mail address: DaviesRE11@cf.ac.uk (R. Davies).

http://dx.doi.org/10.1016/j.engfracmech.2014.10.010 0013-7944/© 2014 Elsevier Ltd. All rights reserved.

\mathbf{A}_{Ω}	as defined for Eq. (3)
$\mathbf{A}_{\Omega\omega_v}$	as defined in Eq. (14)
$A_{\Omega v}$	as defined in Eq. (40)
а	radius of the spherical inclusion
A_E	activation energy
C_{add}	total added compliance
C_{β}	evolution constant
C _{cem}	cementitious material content
CE	constant as defined for Eq. (A.6)
c_{f_c}	constant as defined for Eq. (A.8)
c_{f_t}	constant as defined for Eq. (A.9)
	matrix elastic compliance
C	elastic compliance
\mathbf{D}_{M}	matrix elastic tensor
$\mathbf{D}_{M\omega_y}$	volumetric micro-cracked matrix tensor
$\mathbf{D}_{M\Omega}$	composite elastic tensor
$\mathbf{D}_{M\Omega\omega_v}$	volumetric micro-cracked composite tensor
\mathbf{D}_{O}	inclusion elastic tensor
D _{Sec}	secant constitutive matrix
E_{O}	inclusion Young's modulus
E_d	composite Young's modulus
E_M	matrix Young's modulus
E_{ν}	volumetric Young's modulus
f	crack density parameter
F_{ζ_d}	directional micro-cracking function
F_{ζ_v}	volumetric micro-cracking function
f_c^{*}	compressive strength
f_t	tensile strength
f_M	volume fraction matrix
f_{Ω}	volume fraction inclusion
f_{td}	local directional tensile strength at the aggregate/cement paste interface
f_{tv}	local volumetric tensile strength at the aggregate/cement paste interface
H _{cem}	heat of hydration for cement
H_{FA}	heat of hydration for fly ash
H _{slag}	heat of hydration for slag
H_{uls}	ultimate heat of hydration
H_u	total heat of hydration
h_d	3 times the size of coarse aggregate
h_v	size of the coarse aggregate
4 ⁴	fourth order identity tensor
i	integration direction
K_M	bulk modulus of matrix
$K_{M\Omega\nu}$	bulk modulus of composite as a function of solidification
K_{Mv}	bulk modulus of matrix as a function of solidification
K_{Ω}	bulk modulus of inclusion
Ν	stress transformation tensor
N_{ε}	strain transformation tensor
n _i	total number of integration directions
p_{cem}	total cement fraction
p_j	fraction by weight of cement
r , s , t	local coordinate system
R	universal gas constant
r_{ζ_d}	as defined for Eq. (30)
$S_E(x)$	exterior point Eshelby tensor
S_{Ω}	interior point fourth order Eshelby tensor
S_{Ω}	volumetric interior point Eshelby scalar
SI	local principal stress
$S_{M\Omega}$	transformed amplified stress adjacent to inclusion
Δt	time step interval

Nomenclature

Download English Version:

https://daneshyari.com/en/article/7169793

Download Persian Version:

https://daneshyari.com/article/7169793

Daneshyari.com