ARTICLE IN PRESS

Engineering Fracture Mechanics xxx (2014) xxx-xxx

Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

Mixed mode fracture analysis of adiabatic cracks in homogeneous and non-homogeneous materials in the framework of partition of unity and the path-independent interaction integral

E. Goli^a, H. Bayesteh^b, S. Mohammadi^{b,*}

^a Department of Civil Engineering, Sharif University of Technology, Tehran, Iran ^b High Performance Computing Lab, School of Civil Engineering, University of College of Engineering, University of Tehran, Tehran, Iran

ARTICLE INFO

Article history: Received 17 October 2013 Received in revised form 11 June 2014 Accepted 17 July 2014 Available online xxxx

Keywords: Interaction integral Adiabatic crack Thermo-mechanical loading Extended finite element method (XFEM) Orthotropic

ABSTRACT

In this paper, the path independent interaction integral has been implemented in the framework of the extended finite element method for mixed mode adiabatic cracks under thermo-mechanical loadings particularly in orthotropic non-homogenous materials. The mesh insensitivity and increased accuracy due to the thermal and displacement asymptotic analytical solutions are discussed and the contour independency of the interaction integral is investigated in different examples. Finally, the problem of crack propagation in orthotropic FGM materials under the thermal loading is investigated to assess the accuracy and robustness of proposed approach.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

New engineering demands have led to the outburst of novel and advanced tailored materials, covering a wide range of layered composites and inhomogeneous materials. Generally, homogenous materials do not properly perform under high thermal gradient or certain mechanical loadings. On the other hand, composite materials have shown severe disadvantages mainly in the form of stress concentration and delamination at the interfaces. Alternatively, functionally graded materials (FGMs) have been designed with continuous variation of material properties to remove the deficiencies related to the existence of interfaces and the inefficient response of homogeneous materials to general thermo-mechanical loadings. In recent years, FGMs have been widely used in high-tech engineering applications such as thermal barrier coating for space applications [1], piezoelectric and thermoelectric devices [2–6], thermionic converters [7], wear and impact resistant components [8] and biomedical and eco-materials [9,10]. FGMs are produced in both isotropic and orthotropic forms, using some of the fabrication techniques such as the plasma sprayed coating [11].

Bending of orthotropic FGMs beams [12], bimaterial FGMs [13], fracture mechanics of thermal barrier FGM coatings [14], crack propagations in FGMs [15,16] and finally FGMs under the impact loading [17,18] are among the main research topics on the subject. Applications of FGMs to withstand high mechanical and thermal loadings simultaneously are probably the most important issue of FGMs, as they may become extremely vulnerable to crack initiation and propagation. As a result,

* Corresponding author. Tel.: +98 21 61112258; fax: +98 21 6640 3808. *E-mail address:* smoham@ut.ac.ir (S. Mohammadi).

http://dx.doi.org/10.1016/j.engfracmech.2014.07.013 0013-7944/© 2014 Elsevier Ltd. All rights reserved.

Please cite this article in press as: Goli E et al. Mixed mode fracture analysis of adiabatic cracks in homogeneous and non-homogeneous materials in the framework of partition of unity and the path-independent interaction integral. Engng Fract Mech (2014), http://dx.doi.org/ 10.1016/j.engfracmech.2014.07.013

E. Goli et al./Engineering Fracture Mechanics xxx (2014) xxx-xxx

2

Nomenclature	
$A \\ b^T \\ a_{ii}$	surface of the domain surface integral vector of additional degrees of freedom corresponding to the crack tip enrichments contracted notation of the compliance matrix
B	matrix of shape function derivatives
B _{th}	matrix of thermal shape functions derivatives
D Ciilu	constitutive tensor
E_{1}, E_{2}	Young's modules with respect to the principal axes of orthotropy
$F, (F_T)$	set of crack tip enrichment functions for mechanical field (for thermal field)
f f ^{mech.}	total force vector vector of mechanical force
f th	thermal force vector
G ₁₂	shear modulus
H	heaviside function
IM I	path-independent Lintegral
J ^{act}	J integral for the actual field
J ^{aux}	J integral for the auxiliary field
K_{11} and K	K_{22} heat conductivity coefficients along the global directions 1 and 2, respectively
K_{I}, K_{II}	mode I and II stress intensity factors
K_{In}, K_{IIn}	normalized stress intensity factors
K_{IC}^{x}, K_{IC}^{y}	mode I toughness with respect to local coordinates at the crack tip
$K_{\theta\theta}$ $K_{\theta\theta}$	critical stress intensity factor in θ direction
M	interaction integral
Ν	shape function
n_j	unit outward normal vector to the Γ_s
a	continuous weight function
$\frac{1}{\overline{q}}$	prescribed value of heat flux
Re	real part
r S	radial direction in polar coordinates
T T	temperature field
\overline{T}	prescribed value of temperature
u	displacement field
$\alpha_1, \alpha_2, \alpha_3$	coefficients of thermal expansion in principal orthotropy directions
Γ_T	boundary related to the thermal loading
Γ_q	boundary related to the prescribed heat flux
ΔI δ	temperature difference from the reference temperature
0 ₁₎ Е;;	components of strain
\mathcal{E}_{ii}^{m}	mechanical part of strain
\mathcal{E}_{ii}^{t}	total strain
ε_{ii}^{th}	thermal part of strain
e ^{act} ⊥m	mechanical part of strain in actual field
$\mathcal{E}_{ii}^{act_th}$	thermal part of strain in actual field
$\varepsilon_{ii}^{act_t}$	total strain in actual field
θ	angular direction in polar coordinates
θ_0	angle of crack propagation
μ_1^{μ}, μ_2^{μ}	roots of the characteristic equation at the crack tip location Poisson's ratio
σ_{ii}	stress components
σ^{aux}_{ij}	auxiliary stress field
$\sigma_{ heta}$	hoop stress

Please cite this article in press as: Goli E et al. Mixed mode fracture analysis of adiabatic cracks in homogeneous and non-homogeneous materials in the framework of partition of unity and the path-independent interaction integral. Engng Fract Mech (2014), http://dx.doi.org/10.1016/j.engfracmech.2014.07.013

Download English Version:

https://daneshyari.com/en/article/7169809

Download Persian Version:

https://daneshyari.com/article/7169809

Daneshyari.com