
Computation of dynamic stress intensity factors in cracked
functionally graded materials using scaled boundary polygons

Irene Chiong a,⇑, Ean Tat Ooi b, Chongmin Song a, Francis Tin-Loi a

a School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2031, Australia
b School of Science, Information Technology and Engineering, Federation University, Ballarat, VIC 3353, Australia

a r t i c l e i n f o

Article history:
Received 17 June 2014
Accepted 26 July 2014
Available online 23 August 2014

Keywords:
Scaled boundary finite element
Polygon element
Functionally graded materials
Fracture
Dynamic stress intensity factors

a b s t r a c t

In this paper, the recently developed scaled boundary polygons formulation for the
evaluation of stress intensity factors in functionally graded materials is extended to elas-
to-dynamics. In this approach, the domain is discretized using polygons with arbitrary
number of sides. Within each polygon, the scaled boundary polygon shape functions are
used to interpolate the displacement field. For uncracked polygons, these shape functions
are linearly complete. In a cracked polygon, the shape functions analytically model the
stress singularity at the crack tip. Therefore, accurate dynamic stress intensity factors
can be computed directly from their definitions. Only a single polygon is necessary to
accurately compute the stress intensity factors. To model the material heterogeneity in
functionally graded materials, the material gradients are approximated locally in each
polygon using polynomial functions. This leads to semi-analytical expressions for both
the stiffness and the mass matrices, which can be integrated straightforwardly. The versa-
tility of the developed formulation is demonstrated by modeling five numerical examples
involving cracked functionally graded specimens subjected to dynamic loads.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are a new class of customizable material arising from advancements in materials
science and technology. Heat, oxidization, and fracture resistances can be increased by tailoring the volume fractions of the
individual material constituents in a predetermined profile. This allows engineers to optimize the performance of FGM
components under critical and extreme conditions for safety–critical structures in key modern industries such as micro-
electronics, aerospace and nuclear energy.

As the application of FGMs become more common in engineering practice, the extent to which these materials can be
tailored against damage becomes more important. Therefore, the capability to analyze the fracture behavior of structures
and components made of FGMs is crucial to their design and development. For this purpose, both static and dynamic anal-
yses can be used. While static analyses provide engineers and designers with an indication of the critical state of stress in a
cracked body, real world structures are invariably loaded dynamically. As such, there is an emphasis for the accurate
analyses of fractured FGM structures and components that are subjected to dynamic loads.
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The stress intensity factors (SIFs) play an important role in characterizing the fracture of FGMs. To compute the SIFs, both
analytical and numerical methods can be used. The analytical solutions of the dynamic SIFs in FGMs have been reported by
many researchers e.g. [1–10]. These studies are, however, limited to a finite crack in an infinite medium subjected to simple
load cases. Although analytical methods provide direct closed-form solutions, the trade-off is a loss of generality and the
need for complex solution techniques. Alternatively, numerical methods are more versatile and can be used to model a wider
class of problems.

The finite element method (FEM) is the most widely used numerical method for structural analysis. When standard FEM
procedures are applied to fracture analyses, a very fine mesh is required at the crack tip in order to obtain reliable results.
Otherwise, special elements such as the quarter-point element [11], or elements with embedded asymptotic expansions
[12], have to be used. Moreover, the FEM requires additional post-processing methods such as the J-integral [13] or the
M-integral [14]. These techniques need to be specifically formulated for nonhomogeneous materials such as FGMs. Wu
et al. [15] reported the formulation of the J-integral for dynamic fracture analysis of FGMs. Song and Paulino [16] derived
the M-integral for the dynamic response of FGMs, and found the method to be superior to the J-integral and the direct
correlation technique in calculating the dynamic SIFs.

The extended finite element method (XFEM) resolves some of the issues of mesh refinement about the crack tip in the
FEM by enriching the shape functions of the finite elements in the vicinity of the crack with asymptotic crack tip functions
[17]. Application of the XFEM to compute the dynamic SIFs in FGMs has been reported by Motamedi and Mohammadi [18],
Singh et al. [19], Bayesteh and Mohammadi [20] and Liu et al. [21]. To compute the stress intensity factors, additional
postprocessing techniques e.g. the J- and M-integrals are still required.

Nomenclature

a crack length
B strain–displacement matrix
cd dilatational wave speed
D constitutive material matrix
� strain
g circumferential coordinate
Ei coefficient matrices
E Young’s modulus
F force vector
I identity matrix
JðgÞ Jacobian matrix
KðhÞ vector of generalized stress intensity factors
K stiffness matrix
L characteristic length
M mass matrix
N circumferential shape function matrix
X domain
U polygon shape function matrix
W Schur transformation matrix
W� strain modes
WðsÞrL singular stress modes at characteristic length
Wr stress modes
WðsÞr singular stress modes
Wu displacement modes
q mass density
Sn block diagonal Schur matrix
r stress
Dt time step
t time
€ub vector of nodal acceleration
_ub vector of nodal velocity
ub vector of nodal displacements
m Poisson’s ratio
n radial coordinate
Z Hamiltonian coefficient matrix
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