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a b s t r a c t

Subsurface crack problems in a cubic piezoelectric material are considered. The problems
are formulated as singular integral equations and solved by a direct numerical method.
Among normal and parallel cracks, only the parallel cracks with constant electric potential
boundary condition imposed on the half-space that permeable and impermeable cracks
need to be differentiated. The numerical accuracy of the present results is confirmed by
comparing them with known exact solutions. The influence of material properties on the
dimensionless electromechanical field intensity factors is found to be through an electro-
mechanical coupling factor introduced in the text.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In order to understand the fracture behavior of piezoelectric materials, crack problems in piezoelectric materials have
been intensively studied experimentally and theoretically. There is now a vast body of literature on this topic and interested
readers may find numerous articles referenced in [1–8]. It should be pointed out that most numerical results have been
reported in isolation for materials with hexagonal symmetry. How these results are relevant to materials of different sym-
metry class is uncertain. As the influence of the material properties cannot be fully revealed through those studies, even for
materials of the same class have to be investigated case by case. To widen our horizon an attempt has been made to study
defect-related problems in cubic piezoelectric crystals [9–13]. This follow-up article addresses some subsurface crack prob-
lems in cubic piezoelectric materials by modeling the crack as a continuous distribution of dislocations; and such an
approach leads naturally to singular integral equations with Cauchy type kernel. The traditional approach to solving singular
integral equations is to reduce them to Fredholm integral equations [14] and then followed by an analytical method (say
successive approximation or Eigen-function expansion) or a numerical treatment. The mathematical steps involved tend
to be tedious and complicated however. A simplified approach is adopted here by directly converting the singular integral
equations into their corresponding algebraic equations through appropriate integration formulas [15]. And this method has
proven quite successful in solving a variety of crack problems in the past [16–21].

There are of course other methods can be used to solve crack problems. But, the application of dislocation methods to
crack problems provides a unique perspective on looking at the fracture behavior of materials; not only elastic cracks but
also elastoplastic cracks can be treated in a unified framework [22,23].

In the next section, the general solution of a cubic piezoelectric material subjected to an anti-plane deformation and in-
plane electric field in terms of two complex functions are reviewed. Particularly, the near-crack-tip displacement disconti-
nuity and electric potential jump across the crack surfaces are shown to be connected to the stress intensity factor and
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electric displacement intensity factor respectively. This allows one to determine these two fracture parameters once the
near-crack-tip displacement discontinuity and electric potential gap are known. In Section 3, the fundamental solution of
a subsurface dislocation with electric potential gap is presented. Similar to [12], two types of electric boundary condition
on the half-space surface are considered. Based on this fundamental solution, singular integral equations are formulated
for the crack problems by simulating the crack as a continuous distribution of dislocations in Section 4. The numerical
method adopted in this article is described in Section 5 and the results are reported and discussed in Section 6. Since results
of parallel permeable crack problems have been reported and discussed earlier [12]; here the focus of our attention is on
normal and parallel impermeable cracks. In fact as shown later, only under the boundary condition of imposing constant
electric potential on the surface of the half-space, that permeable and impermeable cracks need to be differentiated for sub-
surface parallel cracks. Conclusions are drawn in the last section.

2. Basic equations

A rectangular coordinate system is chosen with the x-axis being along [100], the y-axis along [010] and the z-axis along
[001] of the cubic crystal. For cubic crystals, the electro-elastic coupling can be separated into two types: (i) in-plane defor-
mation coupled to out-of-plane electric field, or
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and (ii) out-of-plane deformation coupled to in-plane electric field, or

Nomenclature

a depth of the upper tip of a subsurface normal crack
b depth of the lower tip of a subsurface normal crack
bs Burgers vector of a screw dislocation
b/ electrical potential jump associated with a dislocation
c half crack-length
C11, C12, C44 elastic constants
d depth of a subsurface parallel crack
Dx Dy electric displacement components
DA uniformly applied electric load on the crack surface
e14, e15 piezoelectric constant
Ex Ey electric field components
h electromechanical coupling factor (defined as e2

14=ðC44j11Þ)
k electromechanical coupling factor (defined as e2

15=ðC44j11Þ)
KIII stress intensity factor of mode III
KIII dimensionless stress intensity factor (defined in Eqs. (39) and (42) for pure mechanical loadings and pure electric

loadings respectively)
KD electric displacement intensity factor
KD dimensionless electric displacement intensity factor (defined in Eqs. (40) and (41) for pure electric loadings and

pure mechanical loadings respectively)
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respectively)
w displacement
x y rectangular coordinates
z1 z2 complex variables (defined as x + l1y and x+l2y respectively)
cyz czx shear strain components
U electric potential
j11 dielectric constant
k Real parameter defined as �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C44=j11

p
k1, k2 pure complex parameters (equal to ik and �ik respectively)
l1, l2 pure complex parameters (equal to is1, is2 respectively)
sA uniformly applied shear stress on the crack surfaces
syz szx shear stress components
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