ARTICLE IN PRESS

Engineering Fracture Mechanics xxx (2013) xxx-xxx

Contents lists available at SciVerse ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

A micro-meso-model of intra-laminar fracture in fiber-reinforced composites based on a discontinuous Galerkin/cohesive zone method

L. Wu^a, D. Tjahjanto^{b,c}, G. Becker^{a,1}, A. Makradi^d, A. Jérusalem^{b,e}, L. Noels^{a,*}

^a University of Liège, Computational & Multiscale Mechanics of Materials, Chemin des Chevreuils 1, B-4000 Liège, Belgium

^b IMDEA Materials Institute, C/ Eric Kandel 2, 28906 Getafe, Spain

^c Department of Solid Mechanics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

^d Centre de Recherche Public Henri Tudor, Avenue John F. Kennedy, 29, L-1855 Luxembourg, Luxembourg

^e University of Oxford, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, UK

ARTICLE INFO

Article history: Received 23 October 2012 Received in revised form 19 March 2013 Accepted 20 March 2013 Available online xxxx

Keywords: Composites Fracture Debonding Cohesive law Microscale Discontinuous Galerkin method

ABSTRACT

The recently developed hybrid discontinuous Galerkin/extrinsic cohesive law framework is extended to the study of intra-laminar fracture of composite materials. Toward this end, micro-volumes of different sizes are studied. The method captures the debonding process, which is herein proposed to be assimilated to a damaging process, before the strain softening onset, and the density of dissipated energy resulting from the damage (debonding) remains the same for the different studied cell sizes. Finally, during the strain softening phase a micro-crack initiates and propagates in agreement with experimental observations. We thus extract a resulting mesoscale cohesive law, which is independent on the cell sizes, using literature methods.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The engineering fracture theories developed for homogeneous materials cannot always be directly applied when considering new engineered heterogeneous materials, such as composites. Indeed, fracture mechanisms of composites are complex and require a multiscale approach: from the microscale within a ply to the laminate macroscale. Although some numerical solutions have been developed to address these particular topics, such as the damage-based micro-meso-macro-approaches for composites proposed by Ladevèze et al. [1], or such as purely numerical approaches as discussed by LLorca et al. [2], it is still challenging to predict explicitly the composite fracture behavior using microscale simulations.

One way to predict a mesoscale fracture criterion from numerical simulations at the microscale is to analyze the microscale deformation mechanisms using finite elements combined to models accounting for the fracture processes ranging from micro-crack initiation to micro-crack propagation. A natural way to achieve this goal is to enhance the finite-element model with the so-called cohesive zone method (CZM).

The cohesive zone method was pioneered by Barenblatt [3] and Dugdale [4] to introduce traction between crack lips during the separation process. In particular in Barenblatt's model the traction separation law (TSL) decreases monotonically

* Corresponding author. Tel.: +32 4 366 48 26; fax: +32 4 366 95 05.

0013-7944/\$ - see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.engfracmech.2013.03.018

Please cite this article in press as: Wu L et al. A micro-meso-model of intra-laminar fracture in fiber-reinforced composites based on a discontinuous Galerkin/cohesive zone method. Engng Fract Mech (2013), http://dx.doi.org/10.1016/j.engfracmech.2013.03.018

E-mail address: L.Noels@ulg.ac.be (L. Noels).

¹ PhD candidate at the Belgian National Fund for Education at the Research in Industry and Farming.

ARTICLE IN PRESS

L. Wu et al./Engineering Fracture Mechanics xxx (2013) xxx-xxx

Nomenclature	
Δ	orthotropy direction in initial configuration
A D	volume forces
D	volume forces
C	material tensor
d	filaterial terisor
u _f E	Noung's modulus
E E	longitudinal Young modulus
EL E	transverse Voung modulus
E _T f	nodal external forces
f.	nodal interface forces
\mathbf{f}_{a}	nodal internal forces
Linta E	deformation gradient
F ^e	elastic deformation gradient part
F ^p	plastic deformation gradient part
l C	energy release rate
G G	compliance tensor
Go	initial compliance tensor
Ge	fracture energy
GIT	longitudinal transverse shear modulus
GTT	transverse shear modulus
h	hardening modulus
h_{ν}	height of a k by k-fiber cell
I _i	<i>i</i> th invariant
i	Jacobian
ĸ	kinetic energy
K _{IC}	mode I fracture toughness
K _{IIC}	mode II fracture toughness
L_k	length of a k by k-fiber cell
т	fifth transverse anisotropy parameter
\mathbf{M}_{ab}	nodal mass matrix
n	sixth transverse anisotropy parameter
N	outward normal in the reference configuration
N	outward normal of the minus element
N _a	snape function a
p D	accumulated plastic strain first Diala Virghboff strass tonsor
r t	tangential opening direction
t Ŧ	surface traction amplitude per unit deformed surface
t.	thickness of a k by k-fiber cell
\overline{t}_{m}	surface traction reached at maximum opening
t t	surface traction per unit deformed surface
ī. Ī−	surface traction of the minus element
t ⁿ	time at time step <i>n</i>
Т	time interval
Т	surface traction per unit reference surface
u	displacement field
\boldsymbol{u}_a	nodal displacements
u ^m	micro-displacement
u ^M	mesoscale opening
$\boldsymbol{u}_{\mathrm{m}}^{\mathrm{0}}$	compatibility displacement
u	prescribed displacement field
\boldsymbol{w}_u	trial functions
W _{ext}	work of external forces
vv _{int}	work of Internal forces
x _a x	notarial position
л Х	initial position
α	Boolean changing at fracture onset
а Им	first Chung-Hulbert narameter
\mathcal{M}_{M}	mot chang-hubbert parameter

2

Please cite this article in press as: Wu L et al. A micro-meso-model of intra-laminar fracture in fiber-reinforced composites based on a discontinuous Galerkin/cohesive zone method. Engng Fract Mech (2013), http://dx.doi.org/10.1016/j.engfracmech.2013.03.018

Download English Version:

https://daneshyari.com/en/article/7170007

Download Persian Version:

https://daneshyari.com/article/7170007

Daneshyari.com