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A B S T R A C T

This paper aims to provide an analytical solution for describing the behaviors of a helical multi-wire strand
under axial and torsional loads with the impacts of the local interwire contact. Both the interwire contact
deformation and sliding friction are considered by using a theoretical approach, which divides the internal forces
and moments of the multi-wire strand into two respective parts defined in two deformed configurations: one is
related to the frictionless deformation state, and another is the friction deformation state of the multi-wire
strand. The theoretical analysis has also conducted to understand the global responds of the strand, the local
contact deformation and the friction contributions for a helical triple-wire strand. The overall axial forces, the
twisting moments, and the stiffness components of the triple-wire strand with different helix angles under
tensional and torsional loads are obtained The analytical results are in close agreement with the Finite Element
(FE) predictions, validating the proposed analytical solution. The extended theoretical model and the proposed
analytical solution well predict the responds of the helical triple-wire strand with a large range of helix angles
(from 55° to 90°). The impacts of interwire contact deformation using Hertz and rigid contact theory, as well as
with/without friction forces on the helical multi-wire strand behaviors have been discussed in details. The results
show that the local interwire contact deformation and friction play a significant role on the strand responds as
the helix angle decreasing.

1. Introduction

Helical structures have been widely used in natural and artificial
materials to achieve desired engineering purposes. For instants, wire
ropes are extensively applied as vital structural members in the sus-
pension bridges, building elevators and mine hoists because of their
merits in transferring the tensile load without considerable bending or
torsion stiffness (Feyrer, 2006). Some biological materials with helical
structures like DNA chains, bill awns of storks and climbing tendrils of
plants show outstanding mechanical properties and spontaneous for-
mation considering the weak constituents from which they are as-
sembled (Meyers et al., 2008; Pokroy et al., 2009). As one of the en-
gineering design complicated electric conductor, the helical triple-wire
strand element consisted of three independent wires which is the basic
structure element of the CICCs developed by fusion scientists and en-
gineers in superconducting coils and giant magnets (Hoenig and
Montgomery, 1975).

During the past decades, extensive theoretical and experimental
works have been conducted to explore the mechanical behavior of the

helical structures of wire ropes. Under the simplification hypotheses,
such as small displacements, ideal contacts and frictionless between
wires, some theoretical models were proposed to provide analytical
approaches for global mechanical responses of wire ropes. The simplest
model ignoring the wire bending and torsion effects was firstly pre-
sented by Hruska (1951, 1952) to determine the rope stresses and radial
forces. It was further modified by Knapp (1975) and Lanteigne (1985)
to apply in multi deformation modes. The curved rod theory has been
widely accepted as a more accurate and complex model for analyzing
wire rope structures by Love (1944). Machida and Durelli (1973) stu-
died the influences of bending and torsion stiffness of individual wires
on the whole cable mechanical property. Costello and Philips (1976)
developed a thin rod model with nonlinear equilibrium equations of
curved rods, which included the effects of radius and helix angle var-
iations, i.e., the Poisson's ratio effect. Kumar and Cochran (1987) fur-
ther extended the thin rod model to derive a linearized and closed form
of expression for axial stiffness coefficients. The linearized theories
including the effects of curvature and twist variations for wire ropes
under different modes of contact were developed and systemically
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reported in detail by Costello (1997).
It is known that the nature of interwire contacts in the strands is

essential to determine their strength, performance and serviceability,
and helps to predict the failures. Huang (1978) reported the contact
effect for an elastic strand with a central core surrounded by a single
layer of helical wires subjected to axial forces and twisting moments.
While ignoring the local contact deformation, the Poisson's ratio effect
and the contact forces between the central core and the helical wires
were well considered. The contact forces between the core and wires,
however, might play a significant role to split helical wires as the strand
extending. Phillips and Costello (1985) analyzed the 6×25 filler wires
IWRC rope with good considerations of the contact stress but im-
practicality ignoring the contact deformation. Based on the Hertz-
theory, Kumar and Botsis (2001) studied the contact stresses of multi-
layered wire-rope strands under tension and torsion loads, and then
developed analytical expressions to determine the maximum contact
stresses produced in the strands with metallic wire core. Some of their
theoretical results have been verified by experimental observations, and
the sensitivity analyses were performed for the pitch length in case of
the Lang's lay rope and regular lay rope. Taken into account the in-
terwire contact effects for capturing effective mechanical properties of
multip-layer structural strands, a semi-continuous model was suggested
by Raoof (1983), in which each layer of the twisted wire was modeled
as an orthotropic complete cylinder. Comparing with thin rod models
for the cable analysis, the results showed that the semi-continuous
model would be a good candidate for predicting the performance of the
cable primarily consisted of a large number of wires (Raoof and
Kraincanic, 1995), while it could fail to evaluate the bending stiffness
(Jolicoeur, 1997). The friction among wires in a strand also deserves to
be considered carefully. Limited investigations have considered the
effects of friction at the interfaces of wires. A frictionless analysis could
result in unreliable conclusions obtained from the theoretically iden-
tical tests. For a straight single steel strand of seven-wire, Utting and
Jones (1987a,b) firstly developed a mathematical model for describing
the core-wire friction, and the theoretical model and predictions were
compared with the experimental results. Lanteigne (1985) proposed a
theoretical expression to predict the behavior of a frictional aluminum
conductor steel-reinforced conductor under static loads. While the steel-
aluminum wire friction has been well considered, the proposed ex-
pressions ignored the contributions of the deformation of the wires, the
interlayer friction and slip. Some comprehensive investigations on the
frictional core-wire in a strand under axial, bending, and torsional loads
were conducted by Labrosse et al. (2000). Elata et al. (2005) reported
the significant local stress variations in a double-helical wire whether
the assumption of infinite friction or frictionless for the wires was
considered. Based on the hypothesis that interlay friction is capable to
prevent wires from sliding in the strands, a wire rope model with the
material fiber tracking of cross section and the wire ropes simulta-
neously subjected to tensile and torsional loads was recently developed
by Usabiaga and Pagalday (2008). Their model was established in the
framework of Love's general thin rod theory and treated with doubly
helical wires with the same rigorousness rather than straight and helical
wires. Besides the theoretical models and analyses, many computa-
tional models have been proposed to achieve accurate predictions.
Using a helical slice discretized with volume elements, Jiang et al.
(1999, 2008) numerically investigated a simple straight wire rope
strand under axial loads to predict its global behavior and the stress
distribution in the wires. The results were compared with the linearized
solutions and experimental results of Costello (1997), which shows a
good agreement for the strand having the free end conditions, but
sometime an obvious difference for the fixed conditions. Nawrocki and
Labrosse (2000) presented a FE model using the Cartesian isopara-
metric formulation to simulate a straight wire rope strand with all the

possible interwire motions. The role of the contact conditions in pure
axial loading and in axial loading combined with bending was in-
vestigated to show that the interwire pivoting and sliding govern the
cable response. Recently, FE simulations were widely applied to study
more complex helical structures like two-layer spiral round, triangular
and oval strands under mechanical loading, and steel wire ropes under
fire conditions (Fontanari et al., 2015).

It should be noted that the analytical models mentioned above
generally provided reasonably well predictions on the elastic stiffness
constants of wire strands within a very small lay angle (i.e., most below
20°, or the helix angle higher than 70°). Increasing lay angle (or de-
crease of helix angle) generally results in quite discrepant observations
presented against the theoretical results even with careful considera-
tions of the interwire contact impacts (Argatov, 2011). To the best of
author's knowledge, the effect of local contact deformations including
interwire friction in the helix wires has not been well studied yet. This
work aims to propose a comprehensive theoretical solution for a helical
multi-wire strand subjected to uniaxial tension and torsion loads taking
into account the local interwire contact deformation and friction. An
analytical approach has also been developed to describe the behavior of
a helical triple-wire strand by dividing the internal forces and moments
into two parts: one is related to the frictionless deformation state and
the other is the friction deformation state. The overall axial forces,
twisting moments, and the stiffness components of the triple-wire
strand with different helix angles were achieved. The FE predictions
obtained from the commerical software ABAQUS have been used to
validate the proposed solution. It shows a good agreement between the
proposed solutions and the numerical predictions. Moreover, the in-
fluences of contact deformation and friction on the global behavior of
the triple-wire strand and the local interwire contact characteristics
have been discussed in details.

2. Geometrical description and fundamental equations

Consider a multi-wire strand, the centerline of any wire in a strand
is a three-dimensional space curve (as shown in Fig. 1). In order to
precisely analyze and model the equilibrium state and deformation of
the multi-wire strand, the local coordinate systems are adopted. At an
arbitrary point P of center line of any one of the wires, the well-known
Frenet-Serret local coordinate frame, P N B T{ : , , } where N B T, , re-
spectively represent the unit basis vectors along the tangential, normal
and binormal directions of the wire center line, is coincide with a new
orthonormal local frame system of P E E E{ : , , }1 2 3 in the initial un-
deformed configuration, as shown in Fig. 2a. In the final deformed
state, the Frenet-Serret local coordinate frame and orthonormal local
frame systems respectively are denoted by P n b t{ : , , } and P e e e{ : , , }1 2 3 ,
as shown in Fig. 2c. The angle between e1 and n is denoted as χ , and the
curvature and the torsion of a space curve respectively are represented
as κ, τ , then the curvature vector, = ωω ei i, can be given as,

Fig. 1. Multi-wire strand structure and the cross-section profile.
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