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A B S T R A C T

Levy's analytical solution approach is extended for analysis of rectangular strain gradient elastic plates under
static loading for the first time with different boundary conditions at the edges using the method of super-
position. The governing equation of equilibrium and the corresponding classical/non-classical boundary con-
ditions for strain gradient flexural Kirchhoff plate under static loading are considered. Numerical examples on
static bending of Kirchhoff nanoplates involving five different combinations of simply supported, clamped and
free edge boundary conditions are presented. The effect of negative strain gradient terms is of hardening nature
thus resulting in decrease in the deflection. Plates with geometry comparable to the microstructural length scale
show significant size effect and this size dependency diminishes with the increase in the plate size.

1. Introduction

Micro and nano sized structural components, such as plates and
shells find extensive applications in Microelectromechanical systems
(MEMS) and Nanoelectromechanical systems (NEMS) as vibration/
mass/gas/force sensors, atomistic dust detectors and actuators/re-
sonators. The support conditions in these applications can be SSSS/
SCSC/SFSF/SCSF/CCCC (Bunch et al., 2007; Sakhaee-Pour et al., 2008;
Arash et al., 2011; Shen et al., 2012). However, their mechanical be-
havior is affected by the material microstructure and long-range in-
teraction forces which are comparatively weaker at macroscales. Some
of the recent experiments (Stölken and Evans, 1998; Lam et al., 2003;
McFarland and Colton, 2005) on various materials at micro and na-
noscales have captured these size effects to a significant extent. The
forces between atoms depend not only on the stretching, bending and
twisting of the bonds but also on the long-range interactions between
non-adjacent atoms such as van der Waals interaction. The classical
continuum theories are unable to capture these size effects at micro/
nano scale as they do not contain any internal length scale parameter.
Atomistic/molecular modelling (Allinger, 1977; Lii and Allinger, 1989;
Tersoff, 1988; Brenner, 1990) can capture such nonlocal interactions
associated with atomic or molecular motions, however it is computa-
tionally prohibitive for fairly large size structures.

Several modifications in the classical elasticity formulation have
been proposed to address the small scale effects and are classified as:
stress gradient, strain gradient, couple stress and integral types. Their

predictions reduce to those of local continuum theories when the do-
main is much larger than the internal length scale. Eringen's stress
gradient nonlocal theory (Eringen, 1972; Eringen and Edelen, 1972)
assumes that the stress at a point is considered as a function of the strain
fields at all the points in the entire domain which is governed by a
distance decaying attenuation function. The atomic length scales are
directly introduced into the constitutive equations as material para-
meters (Eringen, 1983). This theory is the most popular among all
nonlocal theories and finds numerous applications in the recent lit-
erature (Zhang et al., 2014; Yu et al., 2016; Karličić et al., 2017; Yan
et al., 2017; Nazemnezhad et al., 2018). Different higher-order strain
gradient and inertia gradient theories have been proposed (Aifantis,
1992; Ru and Aifantis, 1993; Chang and Gao, 1995; Mühlhaus and Oka,
1996) to capture the size effect prominent at the micro/nanoscale.
Combining the Eringen's stress gradient model and the second-order
strain gradient model with negative coefficient, a hybrid gradient
elasticity model (Gutkin and Aifantis, 1999; Aifantis, 2003) was pro-
posed to avoid singularities in both stress as well as strain fields.
Peridynamic elasticity theory (Silling, 2000; Silling et al., 2003) leads
to integral form of the governing equations of motion rather than the
partial differential equations. However, the absence of contact force
between adjacent elements corresponds to discontinuous displacement
field when concentrated forces are applied at the boundary.

By introducing an additional higher order equilibrium equation
involving moment of couples along with the traditional equilibrium
equations, the classical couple stress theory (Mindlin and Tiersten,
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1962; Toupin, 1962; Mindlin, 1964) was reduced to the modified
couple stress theory (Yang et al., 2002). Modified strain gradient theory
(Lam et al., 2003) was another development in the field of nonlocal
elasticity which considered the strain energy density as a function of the
symmetric strain, dilatation gradient, deviatoric stretch gradient and
symmetric rotation gradient tensors. The mechanically based approach
to nonlocal elasticity theory (Di Paola et al., 2009, 2013a) modelled
interactions between adjacent volume elements as classical contact
forces while long-range interactions between non-adjacent elements
were modelled as distance-decaying central body forces proportional to
the relative displacements and regulated by a suitably chosen at-
tenuation function. This theory has been employed for investigation of
beams (Di Paola et al., 2011, 2013b), wave propagation in rods
(Zingales, 2011) and plates supported on subgrade (Failla et al., 2013).
Among all these theories, the second-order strain gradient theories are
the easiest to formulate, include only one nonlocal parameter unlike the
modified strain gradient model (Lam et al., 2003) and are capable of
representing the nonlocal effect for different loading/boundary condi-
tions unlike the Eringen's theory (Reddy and Pang, 2008). Strain gra-
dient model with positive nonlocal coefficient (Kumar et al., 2008;
Ansari et al., 2012; Hosseini-Ara et al., 2012) does not satisfy unique-
ness and stability of the solution for certain range of the nonlocal
parameter (Askes and Aifantis, 2006, 2011; Papargyri-Beskou et al.,
2009), whereas its negative counterpart is unconditionally stable and is
the topic of interest for this study.

To smoothen the discontinuities and singularities in the stress and/
or strain field near imperfections, a second-order negative strain gra-
dient theory was proposed (Aifantis, 1992, 1994; 1999; Altan and
Aifantis, 1992, 1997; Ru and Aifantis, 1993; Askes et al., 2002; Askes
and Aifantis, 2006). The constitutive relations for negative second-
order strain gradient nonlocal theory can be expressed as:

= −σ C ε l ε( )ij ijkl kl kl mm
2

, (1)

where σij, εkl and Cijkl are the stress, strain and stiffness terms and l is the
nonlocal parameter. The constitutive relation for the negative strain
gradient theory can also be derived employing the second-order
homogenization scheme (Gitman et al., 2005). Static and dynamic
analyses of gradient elastic bar were carried out in tension (Tsepoura
et al., 2002) using this theory. Static, stability and dynamic analyses of
simply supported and cantilever isotropic Euler-Bernoulli beam
(Papargyri-Beskou et al., 2003) and simply supported isotropic
Kirchhoff plate (Papargyri-Beskou and Beskos, 2008) were performed
analytically using second-order negative strain gradient theory. Static,
stability and dynamic analyses of both ends simply supported, clamped-
clamped, clamped-simply supported and cantilever CNT modelled as
isotropic Euler-Bernoulli beam (Babu and Patel, 2018) were carried out
through both analytical method and FEM using second-order positive/
negative strain gradient theories. Softening and hardening effects were
observed for positive and negative strain gradient theories, respec-
tively.

To the best of the authors' knowledge, the work on strain gradient
elastic plates is meager with limited studies on all edges simply sup-
ported plates. The analytical solution for nonlocal plates with other
boundary conditions incorporating the strain gradient effect is not
available in the literature. The need for analytical solutions in handling
problems involving strain gradient elastic plates propels the present
study.

The paper is organized as follows: In Section 2, the governing
equation of equilibrium and corresponding boundary conditions of
rectangular isotropic Kirchhoff plate with second-order negative strain
gradient effect are given. The solutions are derived analytically for
boundary value problems involving five different boundary conditions
by Levy's approach. In Section 3, numerical examples are presented to
show the capability of the proposed solution for static bending of
flexural plates under uniformly distributed loading condition and the

gradient effect on the static response of the plates are assessed. Section
4 gives an overall summary of the present work.

2. Formulation

A thin rectangular isotropic plate subjected to lateral uniformly
distributed load q with length along x-axis as a, width along y-axis as b
and uniform thickness h is considered (Fig. 1). Based on the Kirchhoff's
flexural plate theory (Timoshenko and Woinowsky-Krieger, 1959),
displacements u, v and w along x, y and z directions, respectively are
written as:
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where w is the transverse displacements of the point (x, y, 0) on the
mid-plane of the plate. The strain-displacement relations can be written
as (Timoshenko and Woinowsky-Krieger, 1959):
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where εxx and εyy are the normal strains in x and y directions, respec-
tively and γxy is the in-plane shear strain. The equation of equilibrium is
derived as (Timoshenko and Woinowsky-Krieger, 1959):
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where Mxx and Myy are the bending moment resultants about positive y
and negative x directions, respectively and Mxy is the twisting moment
resultant about negative x direction. The sign convention followed for
moments while deriving Eq. (4) is as per the sense of moments about
the mid-plane axes produced by positive stresses over a differential area
on positive z side. The moment resultants are defined as (Timoshenko
and Woinowsky-Krieger, 1959):
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where σxx and σyy are the normal stresses in x and y directions, re-
spectively and τxy is the in-plane shear stress.

2.1. Second-order strain gradient nonlocal theory

Under plane stress condition, Eq. (1) can be written in terms of
Cartesian coordinates x and y as (Papargyri-Beskou and Beskos, 2008;
Papargyri-Beskou et al., 2010):

Fig. 1. Plate geometry and coordinate system.
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