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A B S T R A C T

In this paper, we study the elastic instability and wave propagation in compressible layered composites un-
dergoing large deformations. We specifically focus on the role of compressibility on the onset of instability, and
elastic wave band gaps (forbidden frequency ranges) in finitely deformed buckled laminates. We employ the
Bloch-Floquet analysis to study the influence of compressibility on the onset of instability and the corresponding
critical wavelengths. Then, the obtained information about the critical wavelengths is used in the subsequent
numerical postbuckling simulations. By application of the Bloch wave numerical analysis implemented in the
finite element code, we investigate the elastic wave band gaps of buckled layered composites with compressible
phases.

The compressible laminates require larger strains to trigger mechanical instabilities. This results in lower
amplitudes of instability induced wavy patterns in compressible laminates as compared to incompressible
layered materials. The instability induced wavy patterns give rise to tunability of the widths and locations of
shear wave band gaps (that are not tunable by deformation in LCs with neo-Hookean phases in the stable
regime); this tunability, however, is not significant in comparison to the tunability of the pressure wave band
gaps. Thus, the complete band gaps (frequency ranges where neither shear nor pressure wave can propagate) can
be controlled by deformation in both stable and post-buckling regimes.

1. Introduction

Design of microstructured metamaterials for manipulating elastic
wave propagation has drawn considerable attention (Babaee et al.,
2016; Bigoni et al., 2013; Celli et al., 2017; Celli and Gonella, 2015;
Chen and Elbanna, 2016; Chen and Wang, 2016; Harne and Urbanek,
2017; Matlack et al., 2016; Miniaci et al., 2016; Srivastava, 2016;
Trainiti et al., 2016; Xu et al., 2015; Zhu et al., 2014; Zigoneanu et al.,
2014). These new materials can potentially serve for enabling various
applications, such as wave guide (Casadei et al., 2012), vibration
damper (Javid et al., 2016), cloaking (Zhang et al., 2011), and sub-
wavelength imaging (Wood et al., 2006; Zhu et al., 2011). Recently, soft
metamaterials with reconfigurable microstructures in response to ex-
ternal stimuli, such as mechanical load (dell’Isola et al., 2016; Galich
et al., 2017a; Li et al., 2016; Meaud and Che, 2017; Zhang and Parnell,
2017), electric and/or magnetic field (Bayat and Gordaninejad, 2015;
Galich and Rudykh, 2017, 2016; Gei et al., 2011; Huang et al., 2014;
Jandron and Henann, 2017; Yang and Chen, 2008), attracted significant
interest for tuning elastic wave propagation. Moreover, the elastic

instability induced buckling phenomena, giving rise to a sudden change
in microstructure, have been demonstrated to be greatly instrumental
for the design of switchable phononic crystals. Thus, Bertoldi and Boyce
(2008a, 2008b) introduced the concept of instability assisted elastic
wave band gaps (BGs) control in soft elastomeric materials with peri-
dically distributed circular voids (Shan et al., 2014; Wang et al., 2014,
2013). Rudykh and Boyce (2014) showed that the elastic instability
induced wrinkling of interfacial layers could be utilized to control the
BGs in deformable layered composites (LCs). In this work, we analyze
the phenomena with specific focus on the influence of the constituent
compressibility on the instabilities and elastic wave BGs of finitely
deformed neo-Hookean laminates in the postbuckling regime.

The important work on the stability of layered and fiber composites
by Rosen (1965), considered stiff layers embedded in a soft matrix as
elastic beams on an elastic foundation, and derived an explicit ex-
pression to predict the critical buckling strain. Parnes and Chiskis
(2002) revisited the instability analysis in linear elastic LCs, and they
found that the buckling strain of dilute composites that experienced
microscopic instability was constant, while for the macroscopic case,
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the buckling strain agreed with the results of Rosen (1965).
Triantafyllidis and Maker (1985) analyzed the onset of instability in
finitely deformed periodic layered composites. They demonstrated the
existence of the microscopic and macroscopic (or long wave) in-
stabilities by employing the Bloch-Floquet analysis (Geymonat et al.,
1993), along with the loss of ellipticity analysis that is typically used to
detect the onset of macroscopic instability (Merodio and Ogden, 2005,
2003, 2002). Nestorovic and Triantafyllidis (2004) investigated the
interplay between macroscopic and microscopic instability of hyper-
elastic layered media subjected to combinations of shear and com-
pression deformation. Micromechanics based homogenization was uti-
lized to predict the macroscopic instability of transversely isotropic
fiber composites with hyperelastic phases (Agoras et al., 2009; Rudykh
and Debotton, 2012). Recently, Gao and Li (2017) showed that the
wavy patterns of the interfacial layer could be tuned by the interphase
between the interfacial layer and soft matrix. Slesarenko and Rudykh
(2017) implemented the Bloch-Floquet technique into the finite ele-
ment based code and examined the macroscopic and microscopic in-
stability of periodic hyperelastic 3D fiber composites. More recently,
Galich et al. (2018) focused on the influence of the periodic fiber dis-
tribution on instabilities and shear wave propagation in the hyper-
elastic 3D fiber composites. Furthermore, the microscopic and macro-
scopic instability phenomena of multi-layered composites under plane
strain conditions were observed in experiments via 3D-printed layered
materials (Li et al., 2013). Slesarenko and Rudykh (2016) experimen-
tally showed that the wavy patterns in LCs with visco-hyperelastic
constitutes could be tuned by the applied strain rate. Li et al. (2018a)
experimentally realized the instability development in periodic 3D fiber
composites. Through these studies, the role of stiff fiber reinforcement
on the stability of composites has been well understood; in particular,
the composites with stronger reinforcement (with higher shear modulus
contrasts or with larger fiber volume fractions) are more prone to in-
stabilities. However, the role of phase compressibility on the instability
development and post-buckling behavior of hyperelastic laminates has
not been examined.

In the first part of our paper, we will focus on the influence of phase
compressibility on the onset of instability and critical wavelengths that
define the postbuckling patterns of the microstructure. We note that it is
possible to use the estimates for the onset of instability and critical
wavelengths based on the linear elasticity theory (Li et al., 2013;
Rudykh and Boyce, 2014); this, however, does not fully account for the
nonlinear effects of finite deformations. To take into account these ef-
fects, we perform the instability analysis superimposed on finite de-
formations. The obtained information about the critical wavelengths is
further used in the analysis presented in the second part of the paper,
where the elastic waves in the postbuckling regime are analyzed.

Rytov (1956) derived explicit dispersion relations for elastic waves
propagating perpendicular to the layers showing the existence of the
elastic wave BGs (or stop bands) in LC frequency spectrum. Wu et al.
(2009), and Fomenko et al. (2014) investigated the elastic wave BGs of
layered media with functionally graded materials. Recently, Srivastava
(2016) predicted the appearance of negative refraction at the interface
between layered composite media and homogeneous material. More
recently, Slesarenko et al. (2018) showed that negative group velocity
can be induced by deformation in hyperelastic composites in the stable
regime near elastic instabilities. Galich et al. (2017a) obtained explicit
expressions for shear and pressure long waves in finitely deformed LCs
with isotropic hyperelastic phases. Moreover, based on the analysis by
Rytov (1956), Galich et al. (2017a) extended the classical results to the
class of finitely deformed hyperelastic laminates. In particular, Galich
et al. (2017a) show that the shear wave BGs are independent of the
applied deformation in neo-Hookean laminates. In addition, the results
of Galich et al. (2017a) demonstrate that the pressure wave BGs can be
tuned by deformation, mostly via the change in the thickness of the
layers. In this work, we examine the elastic wave propagation in finitely
deformed neo-Hookean laminates in the postbuckling regime, and we

specifically focus on the influence of material compressibility.
The paper is structured as follows: Section 2 presents the theoretical

background for finite elastic deformation and small amplitude motions
superimposed on the finitely deformed state. The numerical simula-
tions, including the procedures to detect the onset of instability and
perform postbuckling analysis, are described in Section 3. The results
are presented in Section 4, which is divided into two subsections.
Section 4.1 is devoted to the analysis of the influence of the constituent
compressibility on the onset of instability; and Section 4.2 presents the
analysis of elastic wave propagation in finitely deformed compressible
LCs in the postbuckling regime. Section 5 concludes the study with a
summary and discussion.

2. Theoretical background

Consider a continuum body and identify each point in the un-
deformed configuration with its position vector X. When the body is
deformed, the new location of the corresponding point is defined by
mapping function = tx χ X( , ). The deformation gradient is defined by

= ∂ ∂F x X/ and its determinant is = >J Fdet( ) 0. For hyperelastic ma-
terials whose constitutive behaviors are described in terms of strain
energy density function W F( ), the first Piola-Kirchhoff stress tensor is
given by

= ∂
∂

WP F
F
( ) . (1)

In the absence of body forces, the equations of motion can be
written in the undeformed configuration as

= ρ D
Dt

P χDiv ,0

2

2 (2)

where Div(•) represents the divergence operator in the undeformed
configuration, D Dt(•)/ is the material time derivative, and ρ0 denotes
the initial material density. When deformation is applied quasi-stati-
cally, Eq. (2) reads

=PDiv 0. (3)

Next we consider small amplitude motions superimposed on an
equilibrium state (Destrade and Ogden, 2011; Ogden, 1997). The
equations of the incremental motion are

= ρ D
Dt

P uDiv ˙ ,0

2

2 (4)

where Ṗ is an incremental change in the first Piola-Kirchhoff stress
tensor and u is an incremental displacement. The incremental change in
deformation gradient is given by

=F u˙ Grad , (5)

where Grad (•) represents the gradient operator in the undeformed
configuration.

The linearized constitutive law can be expressed as

A=P F˙ ˙ ,ij ijkl kl0 (6)

whereA = ∂ ∂ ∂W F F/ijkl ij kl0
2 is the tensor of elastic modulus. Substitution

of Eqs. (5) and (6) into Eq. (4) yields
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In the updated Lagrangian formulation, Eq. (7) reads

A
∂

∂ ∂
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u

x x
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2 (8)

where A A= −J F Fipkq ijkl pj ql
1

0 and = −ρ J ρ1
0.
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