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A B S T R A C T

The physical properties of arteries are important in the research of the circulatory system dynamics. Moreover, in
order to build Virtual Reality Simulators, it is crucial to have a tissue model able to respond in real time. A
reduced mesh size results in shorter processing times, which can be achieved using a two-dimensional grid. In
this work, a triangular topology is considered and the nodes are connected by three kinds of linear springs (one
normal and two angular ones). The spring stiffnesses depend on the mesh geometry and on the elastic properties
of the artery. The model linearizes the material response, but it still contemplates the geometric nonlinearities.
Comparisons showed a good match with a nonlinear model and with our previous model based on a quad-
rilateral topology. However, the proposed model extension is more flexible and easier to implement than the
previous one.

1. Introduction

Conducting clinical research is expensive, time-consuming, and
manipulating biological variables is very challenging (Gwak et al.,
2010). Although mathematical modeling may be difficult in some cases,
virtual cardiovascular simulations are inexpensive and variables can be
easily controlled (Zannoli et al., 2009). For example, studies of ather-
osclerotic plaques have evaluated the 3D stress distributions within
plaques under certain loading and boundary conditions, so to analyze
the biomechanical response to geometrical, structural, and material
changes (Creane et al., 2010; Cilla et al., 2012; Morlacchi et al., 2013;
Holzapfel et al., 2014).

A better understanding of the arterial wall mechanics can provide
relevant information for medical diagnosis and therapies of some vas-
cular pathologies (Garcia-Herrera et al., 2012). Indeed, the measure-
ments of the arterial tree stiffness can be applied in routine clinical
practice for risk stratification (Pereira et al., 2015). Detailed knowledge
of vascular tissue properties is required to improve procedures such as
angioplasty, to design arterial prostheses, and to describe the dynamics
of the interaction between the heart and the circulatory system
(Holzapfel et al., 2002). Moreover, physiological and pathological
changes in the cardiovascular system directly influence the mechanical
behavior of arterial walls (Diez, 2007).

The arterial wall is incompressible, anisotropic, inhomogeneous,
highly nonlinear, and exhibits hysteresis under a cyclic load (Holzapfel
and Ogden, 2010; Li, 2016). Usually, only the passive behavior of the
tissue is considered, but even so, a complex set of equations results and
a considerable amount of processing time is used to obtain the solution.

In order to show the artery deformations caused by the introduction
of medical devices, a truthful Virtual Reality Simulator(VRS) must
consider the physical models of the device and of the artery
(Alderliesten et al., 2007; Wang et al., 2014; Baier et al., 2015, 2016).
Due to its strong mathematical background, Finite Element Methods
(FEM) are physically accurate (Garcia et al., 2006) and linear FEM are
the most popular technique to model tissue deformation in VRS (Misra
et al., 2008). The FEM have shown to be robust for the quantification of
arterial stresses, and they have been successfully utilized for modeling
of the stent-artery interaction. Balloon expandable stents have also been
compared with self-expanding stents in terms of the level of stresses
they induce within the arterial wall, and hence the risk of arterial in-
jury.

A VRS must work in real time. For example, a haptic device de-
mands a minimum refresh rate of 500 Hz, so that the user can experi-
ence a continuous (smooth) contact feeling. Thus, the reaction force
due to tissue deformations has to be calculated very quickly. Although
commercially available finite element codes take into account several
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physical aspects of arteries (including nonlinearities), the computation
time would be too long for VRS. The model developed in this paper is
intended to be used in fast calculations of artery deformations, where
an exact response is not necessary.

In particular, the artery deformations produced by a catheter wire
are tiny, and in this case the linear approximation is adequate. Hence,
linearizations are adopted in the calculations of the elasticity tensor and
of the spring stiffnesses. Furthermore, the method is based on a struc-
tural mechanic approach, because a VRS only requires the force feed-
back at the contact points and not the knowledge e.g. of a stress field at
the surface.

A two-dimensional mesh is proposed and so the numerical diffi-
culties arising from the isochoric constrain in three dimensions are
avoided. This paper is organized as follows, in Section 2 the stiffness
tensor component Cηηηηt is estimated, from which Cθzθzt can be calcu-
lated. Furthermore, the interaction between the nodes is simulated
using normal, angular in plane, and angular out of plane springs. Then,
in Section 3 the stiffnesses are determined and the results are analyzed.

2. Methods

When accuracy is not the most relevant aspect, a reduced mesh size
and a linearization increase the computing performance. The model
developed in this work is equivalent to a linear FEM using a triangular
mesh with few nodes. First, additional stiffness tensor components are
estimated and, afterwards, the formulas for calculating the stiffness of
the springs are deduced.

2.1. Stiffness tensor

Fiber dispersion in collagenous soft tissues has an important influ-
ence on the mechanical response (Holzapfel and Ogdeon, 2017). There
exist two different approaches for modeling fiber dispersion: the “an-
gular integration” (Lanir, 1983) and the “generalized structure tensor”
(Gasser et al., 2006). Both models have equivalent predictive power,
and from the theoretical point of view neither of these models is su-
perior to the other. However, the generalized structure tensor has
proved to be very successful in modeling the data from experiments on
a wide range of tissues. Furthermore, it is easier to analyze, simpler to
implement, and the related computational effort is much lower than the
angular integration approach.

Holzapfel et al. (2015) provide an overview of the main existing
continuum nonlinear mechanical models of arteries, which have proven
to give reliable results. In general, classical continuum mechanics as-
sumes that the constitutive models and the corresponding simulations
start from an unloaded, stress-free reference configuration (Pierce et al.,
2015). This has been used to calculate the amount of stress applied to
the tissue and its associated strain response (Fung, 1993; Humphrey,
2002; Vito and Dixon, 2003; Sokolis, 2008).

However, the boundary value problem of interest represents a
loaded geometry and includes residual stresses. It has been shown that
residual stresses make the stress distribution more homogeneous within
each arterial layer (Fung, 1991). The modeling of residual deformations
take into account the stress and bending, which are axially dependent.
In order to take into account the residual stretches in our model, it
would be necessary to calculate in a previous step the stresses and
prestresses using a continuum mechanics approach (Pierce et al., 2015).
Then the resulting stretches can be used to compute the inhomogeneous
stiffness tensor (see below), which in turn is used to compute volume
averages (Section 2.2). Nevertheless, this will not be pursued mainly
because in our model only a two-dimensional picture is obtained, and
the stress variation within a layer cannot be observed.

Usually, only planar biaxial deformations (tangential stretch λθ and
axial stretch λz) are performed in experiments to obtain the most re-
levant information about the material properties. Nonetheless, this is
not sufficient to characterize all material properties of soft tissues

(Holzapfel and Ogden, 2009). In the present work, the energy density
function for the arterial layer t (Intima, Media, or Adventitia) is given
by
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and the physical parameters of the layers μt, k t1 , k t2 , ρt, ϕt were ex-
perimentally obtained from the coronaries of human cadavers
(Holzapfel et al., 2005). In particular, the energy density invariants
capture structural aspects of the tissue (e.g. the orientation and dis-
persion of collagen fibers).

The stiffness tensor components Cθθθθt, Czzzzt, and Cθθzzt of layer t
were determined in Ref. (Baier-Saip et al., 2017). However, the calcu-
lations of the angular spring stiffnesses (Section 2.2) require also the
knowledge of the tensor component Cηηηηt. In order to find Cηηηηt, it is
necessary to write the stretches λθ and λz appearing in the energy
density in terms of λ (the stretch parallel to the vector e , see Fig. 1). To
this end, consider the point A0 with coordinate (1,1). If the body is
subjected to an initial deformation specified by the stretches λθ0 and
λz0, the new coordinate will be λ λ( , )θ z0 0 (point A1). After displacing this
point a distance δ in the direction of e , the coordinate becomes

+ +λ δ η λ δ η( cos , sin )θ z0 0 (point A2). The stretch ratio equals the final
length divided by the initial length parallel to the axis, which is equal to
1
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Moreover, the projections of the segments OA0 and OA2 along the
vector e , are +η ηcos sin and + +λ η λ η δcos sinθ z0 0 respectively. Thus,
the stretch ratio is
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The projections of the segments OA0 and OA2 along the vector
= − +⊥ η ηe e esin cosθ z perpendicular to e , are −η ηcos sin and

Fig. 1. Coordinates of a point in a body without stretch (point A0), with an
initial stretch (point A1), and after an additional deformation parallel to e
(point A2). The unit vector e is in the plane of eθ and ez. Besides, the angle
between e and eθ is η.
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