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A B S T R A C T

In this work, the exact solution for the stress fields ahead of cracks initiated at sharp notch tips under antiplane
shear and torsion loadings is derived in close form, leveraging conformal mapping and the complex potential
method for antiplane elasticity.

Based on the stress field distributions, relevant expressions for the mode III crack stress intensity factors are
derived and their accuracy is discussed in detail taking advantage of a bulk of results from FE analyses.

1. Introduction

Stress concentrators, such as notches and holes, are unavoidably
present in mechanical components, leading to cracking phenomena
both under static and fatigue loadings.

Explicitly or implicitly, local approaches to the static and fatigue
design of mechanical components are based on the local stress fields
close to notch tips (see among the others, Yosibash and Mittelman,
2016, and references reported therein) thus justifying the large atten-
tion paid over the decades in the literature to the study of this problem
(see, just to mention a few: Inglis, 1913, Neuber, 1958, Creager and
Paris, 1967, Kullmer, 1992, Lazzarin and Tovo, 1996, Zappalorto et al.,
2010, Zappalorto and Lazzarin, 2011, Feriani et al., 2011, Felger and
Becker, 2017, Zappalorto and Maragoni, 2018).

When dealing with cyclic loadings, notch tip stresses are thought of
as controlling the fatigue life spent to initiate short cracks fully im-
mersed in the stress field of the un-cracked (notched) component. For
some relevant applications, such as the design against fatigue of steel
and aluminum welded joints, the initiation life is the major part of the
entire life of the component and fatigue life predictions can be simply
based on Williams’ asymptotic stress field distribution around the un-
cracked weld toe or root region (Livieri and Lazzarin, 2005).

In the case of notched (unwelded) components, instead, the ratio
between the number of cycles to crack initiation and those to failure
strictly depends on the notch tip radius. For large radii, the initiation
phase is predominant, whereas, when the notch tip radius is very small,
the propagation phase becomes more and more important (Lazzarin
et al., 1997). Similar arguments can be used also in the case of

manufacturing defects (see, among the others, Atzori et., 2003, Carraro
et al., 2015, Maragoni et al., 2016). In all these cases, the propagation
phase cannot be neglected, and should be assessed taking advantage of
the integration of the Paris’ fatigue curve. To this end, the knowledge of
the crack stress intensity factor is essential and many authors devoted
great efforts to determine K values for cracks emanating from notches.

The literature on this topic is so broad that a comprehensive review
is far from easy and, especially, is out of the specific aim of the present
paper. In the following, only some examples will be discussed, without
the ambition to be thorough. Worth of being mentioned is the paper by
Bowie (1956), who gave the solutions for a circular hole with a single
edge crack and a pair of symmetrical edge cracks in a plate under
tension, whilst Tweed and Rooke (1973) used the Mellin transform
technique to study the case of a branching crack emanating from a
circular hole under biaxial tension. The analysis was also extended to
elliptical holes by Newman (1971) and Murakami (1978) who studied
the tension problem for an elliptical hole with symmetrical edge cracks,
and Isida and Nakamura (1980) who analysed a slant crack emanating
from an elliptical hole under far applied uniaxial tension and shear.

The problem of cracks initiating at edge rounded notches was also
comprehensively debated, amongst the others, by Lukas and Klesnil
(1978), Bandyopadhyay and Deysarker (1981), Shijve (1982),
Kujawskii (1991) and Xu et al. (1997) whereas cracks from sharp not-
ches or holes were studied by Neal (1970), Muki and Westman (1974),
Hasebe and Ishida (1978) and Hasebe and Ueda (1980), just to mention
a few.

Despite such an intense scrutiny carried out in the previous century,
this topic is still attracting the interests of researchers, as documented
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by some works published in the more recent literature related to cracks
emanating from rounded notches (see for example Jones and Peng,
2002, Xiangqiao Yan, 2004, 2005; 2006; The et al., 2006; Abdelmoula
et al., 2007; Weiβgraeber et al., 2016a,b) as well as from singular points
(Philipps et al., 2008; Iida and Hasebe, 2016; Weiβgraeber et al.,
2016a,b).

However, in the best of the authors’ knowledge, the analytical study
of the whole stress fields ahead of cracks nucleated at the tip of notches,
accounting for the combined effect of the crack tip singularity and
notch stresses, has received far less attention so far. Within this context,
worth of mention is the work by Hasebe and Ishida (1978) who pro-
vided the solution for a crack originating from a triangular notch on a
rim of a semi-infinite plate, and the paper by Hasebe and Ueda (1980)
who studied the stress field of a crack originating from a square hole
corner. In both cases, the proposed solution is exact but very compli-
cated, and a simple expression for the stress field was not given in an
explicit form.

The aim of the present paper is to partially fill this gap providing an
exact yet simple stress field solution for a crack emanating from a
pointed V notch in a plate subjected to antiplane shear loading and in a
solid bar under torsion.

To this end, the conformal mapping technique is used in combina-
tion with a recent approach proposed by the authors (Salviato and
Zappalorto, 2016), according to which the exact mode III stress field
can be determined using the complex potential approach applied to the
first derivative of the conformal mapping function.

Two relevant cases are addressed and solved separately:

• the mode III problem of a finite crack nucleating from a deep
(mathematically infinite) pointed V notch in a body with a finite
ligament;

• the mode III problem of a finite crack nucleating from a finite depth
pointed V notch in a body with an infinite ligament.

Relevant, exact, expressions for the mode III crack stress intensity
factors are also provided.

The accuracy of the proposed solutions is discussed, taking ad-
vantage of the comparison with the results from FE analyses carried out
on elastic bodies subjected to antiplane shear and torsion loadings,
showing a very satisfactory agreement also in the case of fully finite
bodies.

2. Preliminary remarks

Consider a body made of a homogenous and isotropic material
obeying the theory of linear elastic deformations. Further, consider the
Cartesian reference system (x,y,z) represented in Fig. 1 and suppose
that the body is loaded by a remote shear stress τ∞ resulting only in
displacements w in the z direction, normal to the plane of the notch
characterized by the x and y axes (Fig. 1a).

Let us consider a notch profile and a conformal map z= z(ξ) with

ξ= u+ iv and z= x+ iy such that the notch profile is described by the
condition =u x y u( , ) 0 (Fig. 1b). The constant u0 is taken as a positive
number, so that the domain of integration belongs to the right half
plane of the (u,v) space.

In the foregoing conditions, the out-of-plane displacement compo-
nent w is harmonic (Timoshenko and Goodier, 1970) whereas the other
components are equal to zero. Thanks to the properties of conformal
mapping, the harmonicity of the displacement function

=ω u v w x u v y u v( , ) { ( , ), ( , ) } with respect to the curvilinear co-
ordinates u and v is left intact (Greenberg, 2001; Salviato and
Zappalorto, 2016):
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The foregoing equation can be solved assuming separation of vari-
ables in curvilinear coordinates:
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Substituting Eq. (2) into (1) leads to:
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where λ is real a constant. Accordingly, the governing PDE can be
simplified into two ODE in the variables u, v:

′′ − = ′′ + =f u λ f u g v λ g v( ) ( ) 0 ( ) ( ) 02 2 (5)

With the aim to introduce the relevant boundary conditions, the
following expressions for strains and stresses in curvilinear coordinate
are useful (Sokolnikoff, 1983):
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where G is the elastic modulus in shear and hi is the factor of distortion
(Neuber, 1958).

As, in general, ≠h 0i , the Dirichlet conditions in terms of stresses
result in Von Neuman conditions on ω.

The problem is then defined by the following system of equations:
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where Eq. (7c) is the free-of-stress condition along the notch edge,
whereas Eq. (7d,e) express the condition for bounded stresses far away
the notch tip.

The case λ2≠0 can be disregarded as it provides trivial solutions
only. Differently, under the condition λ2= 0, the general solution:

= + +ω u v A Bu C Dv( , ) ( )( ) (8)

can be further simplified into Eq. (9) to account for boundary condi-
tions:

= +ω u v C C v( , ) 1 2 (9)

where C1 represents a rigid translation which does not contribute to the
strain field and can be ignored.

Introducing Eq. (9) into the definition of stresses and invoking
Cauchy-Riemann conditions, one gets the following expressions:
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=ς GC2 being a constant to determine. It is worth noting that, as ξ’=d

Fig. 1. (a) Notched body under longitudinal shear; (b) Typical conformal
mapping describing the notch. The boundary is defined by the condition u= u0.
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