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A B S T R A C T

This study investigated the internal resonance phenomenon of a suspended bridge structure with a 6-Degree-of-
Freedom sectional model. The primary resonance of the second mode of the system under harmonic excitation is
firstly studied. The one-to-two internal resonance between the second and third modes, and one-to-three internal
resonance between the second and fourth modes may be induced if the corresponding natural frequency ratios
are close to 2.0 and 3.0, respectively. Numerical analysis also shows that the two-to-one internal resonance
between the third and second modes can be induced under different scenarios of excitation. The first one
happens with the second mode being excited, resulting in two response peaks in the frequency response curves.
The second one may occur when the third mode is excited with sufficient large excitation where most of the
energy input will be transmitted to the second mode. Hopf bifurcation can also be found in the frequency
response curve of the system. Lastly, the three-to-one internal resonance between the fourth and second modes is
also found when the second mode is excited. The response of the second mode is slightly reduced with a distinct
increase in the response of the fourth mode due to the internal resonance. All these behaviors of this dynamic
system indicate the meaningful role played by a variety of internal resonances in the design of mega-scale cable-
supported bridge structure.

1. Introduction

The dynamics of long span cable-supported bridges is always a
major topic of research in civil engineering. Continuum model and
sectional model are two modeling approaches for the study. Sectional
models have been demonstrated to be capable to illustrate the inter-
action between oscillations in the torsional and vertical directions,
though in an approximate and analytical form.

The most popular sectional model is a two-Degrees-of-Freedom (2-
DoFs) system, which can demonstrate the vibration of one vertical
mode and one rotational mode of the bridge deck (Jacover and
McKenna, 1994; Doole and Hogan, 2000). Gao and Zhu (2015) studied
the nonlinear mechanical stiffness and damping of this sectional model.
De Freitas et al. (2014a; 2014b) used the Lazer-McKenna model (Lazer
and McKenna, 1990) to study the nonlinear properties of the system
under periodic external forces. The 2-DoFs model is relatively simple
and it could not give a more detailed description of the bridge behavior.

Other researchers extended the 2-DoFs model into a 4-DoFs model
by considering additional vertical motion of the main cables on two
sides. Plaut and Davis (2007) adopted the 4-DoFs model in their

investigation on the vertical and rotational motions of the bridge deck
together with the vertical motion of the cables when the stiffness
symmetry of the system about the centerline of deck is suddenly lost.
More recently, a multi-body model was proposed to model the bridge
section of long span bridges for the linear and nonlinear dynamic stu-
dies (Lepidi and Gattulli, 2014, 2016; Lepidi and Piccardo, 2014). In
these studies, the bridge section was modeled by a 4-DoFs system ac-
counting for both the vertical and torsional motions of the bridge deck
as well as the transversal motion of a pair of hangers or stay cables.
Although the vertical motions of hangers were included in the gov-
erning equations of the system, they are neglected in the subsequent
analysis due to the fact that the elastic longitudinal stiffness of the
hangers is much higher than the geometric lateral stiffness. This model
has been adopted in the investigation of interaction between the mo-
tions of the bridge deck and stay cables, and the internal resonance
between the local modes and global modes. The study of dynamic be-
havior of the cable-supported bridges has been developed into a new
area of research since.

The 2-DoFs and 4-DoFs models have been used to study the dynamic
interaction in existing types of cable-supported bridges. New types of
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suspension bridge have been developed in the last two decades, such as
the one shown in Fig. 1(a). The cables spatially support the deck in both
the vertical and lateral directions. Since the main cables are inclined to
the horizon, its motion is not confined to the vertical or horizontal
direction only. A 6-DoFs sectional model has been proposed by the
authors to model the structure including dynamic behavior of the main
cables (Hui et al., 2018). The effect of the cable inclination on the
nonlinear dynamic properties of the system in the primary resonance of
the first two modes was investigated.

Many studies have shown that the internal resonance is a big con-
cern in analyzing the dynamic responses of a multiple DoFs system
(Kang et al., 2017; Gattulli and Lepidi, 2003). The dynamics properties
of a suspension bridge with inclined main cables are further studied in
this paper in the investigation of the internal resonance between dif-
ferent vibration modes. This paper is organized as follows. The 6-DoFs
model is briefly firstly introduced, and the modal property of the system
is examined with study on the effect of system parameters on the modal
frequency ratios between different modes. The primary resonance of the
second mode (torsional mode of deck) indicates the possibility of in-
ternal resonance between the second mode and other higher modes.
The two-to-one internal resonance between the third and second modes
is further investigated with discussions on the phenomena under dif-
ferent scenarios of excitation. Three-to-one internal resonance between
the fourth and second modes then follows.

2. The sectional model

The bridge sectional model (Hui et al., 2018) comprises of three
masses linked by six springs as shown in Fig. 1(b). The masses are from
the sectional bridge deck and the two cables. The six springs are

grouped into four types: S-1 denotes the in-plane stiffness of the main
cable; S-2 denotes the axial stiffness of the hanger; S-3 and S-4 denote
respectively the vertical and torsional stiffness provided by the bridge
deck. This model is adopted in the following studies on motion in the y-
z plane where the contributions from the cables, hangers and deck to
the dynamic interaction of vibration modes of the system can be ac-
counted for. The variables in the figure are defined as follows:

The equations of motion governing the free undamped vibration of
the system can be written as
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where Fcdi and Fhdi (i=1,2) are respectively the dynamic forces in
springs S-1 and S-2. When the trigonometric functions are expanded
into Taylor series up to the second order, these equations of motion can
be rewritten in the following forms as

Nomenclature

Vi (i=1,2) Projection of S-i (i=1,2) in vertical direction
Hi (i=1,2) Projection of S-i (i=1,2) in horizontal direction
D Half width of the bridge deck
α Representative inclination angle of cable and

hanger
= + +α H H V Varctan[( )/( )]1 2 1 2

li (i=1,2,3) Length of spring S-i (i=1,2,3)
m Mass of cable
M Mass of bridge deck

J Moment of Inertia of bridge deck
ki (i=1,2,3,4) Stiffness of spring S-i (i=1,2,3,4)
ui (i=1,2) Horizontal DoF of m
vi (i=1,2) Vertical DoF of m
y Vertical DoF of M
θ Rotational DoF of M
Fcs Internal force of S-1 under static condition
Fhs Internal force of S-2 under static condition
φci (i=1,2) Angle between S-1 and the vertical plane
φhi (i=1,2) Angle between S-2 and the vertical plane

Fig. 1. Cable-supported bridge with spatially inclined cables.
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