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ARTICLE INFO ABSTRACT

Functionally graded (FG) beams are widely used in many fields. However, the corresponding beam theory is not
well established. This paper begins with distinguishing the centroid and the neutral point of cross section. First,
the deformation mode is mathematically suggested for axial displacement as a general higher-order form, and
then orthogonally decomposed with the help of shear stress free conditions and definitions of generalized dis-
placements (i.e. deflection, rotation and stretch). On this basis, the generalized stresses are defined together with
the work conjugated generalized strains, and the decoupled constitutive relations are then derived. Next, the
principle of virtual work is proposed for beam problems, and the variationally consistent higher-order theory is
established for FG beams, which is as simple as that for a homogeneous beam. Finally, the present theory is
demonstrated by typical FG beam problems for both the simply supported case and the clamped case. It is
indicated that the analytical solution to the present modified higher-order theory can be regarded as the
benchmark of FG beam problems. Furthermore, the relation with the traditional higher-order theory is clarified,
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which is beneficial to conduct a comparative study on different higher-order beam theories.

1. Introduction

Functionally graded (FG) materials have many advantages. For ex-
ample, they hold good thermo-mechanical properties (Wetherhold
et al,, 1996) and can resist initiation and propagation of a crack
(Adamek and Vales, 2015). FG beams are widely used in many fields
such as mechanical engineering, biomechanical engineering, auto-
motive and aerospace industries. By FG beam we mean here the iso-
tropic but non-homogenous beam (Reddy, 2011) with the elastic con-
stants smoothly varying over the cross section.

FG beams have been extensively studied by using the existing beam
theories. Using the Euler-Bernoulli theory (EBT), Sankar (2001) solved
static response of FG beam subjected to transverse loads, and Pradhan
and Chakraverty (2013) investigated free vibration via the Rayleigh-
Ritz method for a material varying along the thickness of beam as a
power law. By using the same hypotheses as the EBT, namely the
Kirchhoff plate theory, Ghayesh et al. (2018) studied nonlinear oscil-
lations of FG microplates considering the size effect.

To take into account the shear effect, the Timoshenko beam theory
(TBT) in (Timoshenko, 1921) was applied to FG beams as well. With the
TBT, Adédmek and Vale$ (2015) developed an analytical solution for a
simply supported FG beam subjected to a transverse load for a material
varying as an even function through the thickness of beam. Recently,
considering the size effect, the TBT was used to study vibration and
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post-buckling of FG micro-beams (Li et al., 2016; Wu et al., 2017; Chen
et al.,, 2017). The TBT is however controversial for determining the
shear correction factor of FG beams (Adamek and Vales, 2015; Frikha
et al., 2016). To this end, higher-order beam theories were pursued
instead.

In 2000, Reddy (2000) developed a higher-order theory for FG
plates to study thermo-mechanical coupling and the Von Karman geo-
metric nonlinearity under a transversely distributed load, and for-
mulated the finite element method by using the third-order shear de-
formation plate theory in Reddy (1984). Recently, using the same
higher-order theory, Oscillations of FG microbeams were studied
(Ghayesh et al., 2017) by taking into account the size effect. Using a
unified shear deformation theory (USDT) developed by Soldatos and
Timarci (1993) in which the shape function covers many modes such as
third-order mode in Reddy (1984), Ambartsumian (1958), Reissner
(1975), sine mode in Touratier (1991), hyperbolic sine mode in
Soldatos (1992) and exponential mode in Karama et al. (2003),
Aydogdu and Taskin (2007) investigated free vibration of simply sup-
ported FG beam with Young's modulus varying in the thickness direc-
tion respectively as a power law and as an exponential law. Also based
on the USDT, bending behaviors of hybrid FG beams and sigmoid FG
beams were respectively investigated in Benatta et al. (2009), Ben-
Oumrane et al. (2009). Also based on the same axial displacement
mode, post-bucking of FG nanobeams (Khorshidi et al., 2016), size
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dependency in post-buckling of FG nanoshells (Sahmani and Aghdam,
2017), bending, buckling and vibration of temperature-dependent FG
rectangular plates (Dong and Li, 2016) and size dependency of FG na-
noplates (Phung-Van et al., 2017) were investigated, respectively. With
another unified approach, Thai and Vo (2012) developed various
higher-order shear deformation beam theories for bending and free
vibration of FG beams while Ebrahimi and Barati (2017a, 2017b) in-
vestigated buckling of curved FG nanobeams and vibration of viscoe-
lastic FG nanobeams.

It is clear that the existing work on FG beams is the direct extension
of the homogeneous beams/plates. For example, axial displacement and
moment for FG beams/plates (e.g. in Reddy, 2000; Aydogdu and
Taskin, 2007; Thai and Vo, 2012) are identical to those for a uniform
beam (e.g. in Reddy, 1984; Vo and Thai, 2012; Aydogdu, 2009). As a
consequence, the coupling between bending and stretch which does not
exist for the uniform beam appears unexpectedly for FG beams. For
example, Egs. (1) and (17) in Reddy (2000), Egs. (5) and (9) in
Aydogdu and Taskin (2007), and Egs. (1) and (5) in Thai and Vo (2012)
are all coupled for bending and stretch.

The fact is however that this coupling is not intrinsically present for
FG beams (Morimoto et al., 2006; Abrate, 2008), and, Zhang and Zhou
(2008) have successfully removed the stretch-bending coupling from
the classic theory of FG plates by employing the physical neutral sur-
face, though the coupling between the two bending terms was still
present (Zhang, 2013a; She et al., 2017).

As a matter of fact, even for a uniform beam, use of inappropriate
rotation (e.g. the one at neutral point) may cause coupling between
bending and higher-order bending (e.g. in Levinson, 1980 and Reddy,
1984). In addition, translation of coordinate system can cause non-
physical coupling between bending and stretch (e.g. see Byskov, 2013),
which violates the frame-indifferent objectivity of physical quantities.

Motivated by the great importance to overcome aforementioned
disadvantages, this paper begins with the fundamentals of beam pro-
blems to develop a modified higher-order theory for homogeneous
beams, as well as for FG beams. To this end, this paper is organized as
follows. In Section 2, a beam problem is described by setting the co-
ordinate system and defining the generalized displacements of a FG
beam. The deformation mode is suggested for a FG beam by analyzing
the assumptions and conditions in Section 3. In Section 4, the gen-
eralized stresses are defined based on the deformation mode in Section
3, and the constitutive relations are further derived for a FG beam. In
Section 5, the principle of virtual work is proposed for a FG beam and
then the higher-order theory is established, including the equilibrium
equations and the corresponding boundary conditions. In Section 6,
typical FG beam problems are analytically solved by using the present
modified high-order theory and then discussed as compared with tra-
ditional beam theories. The concluding remarks are finally made in
Section 7.

2. Description of a FG beam problem
2.1. The coordinate system

To focus our attention on a FG beam, a straight beam structure with
rectangular cross section and unit width is considered, as shown in
Fig. 1. From the viewpoint of elasticity, this is a plane stress problem in
the x-z plane. Though the coordinate system can be set at one's dis-
cretion, the origin z = 0 is located in this context at the centroid of cross
section for ease of formulations (see Section 3.2). That is, we have

_/;sz=0

where A is the area of cross section.

Thus, for the current rectangular cross section, the bottom surface
and the top surface can be denoted by z = -h/2 and z = h/2, respec-
tively.
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It should be noted that, as a FG beam structure concerning in this
paper, elastic constants may be a smooth function expressed by E(z) and
G(2) (Aydogdu and Taskin, 2007; Benatta et al., 2009; Ben-Oumrane
et al., 2009; Thai and Vo, 2012).

2.2. The generalized displacements of a FG beam

Regarding this beam structure as a plane stress problem, the dis-
placements to be solved are axial displacement u, (x, z) in the length
direction and transverse displacement u,(x, z) in the thickness direc-
tion. Analogously, from the viewpoint of beam, the generalized dis-
placements can be defined in the average sense over the cross section of
the FG beam.

Definition 1. Based on the transverse displacement u, (x, z), deflection
w(x) of a FG beam is defined as (Reddy, 2011; Zhang, 2013a, 2013b;
Simsek, 2010; Duan and Li, 2015; Geng et al., 2017)

w(@) = [ E@)u;(x, 2)dA/B, @

where

By= [ E@@)dA#0 3

As will be seen in Section 4.2, By can be physically interpreted as the
tensile rigidity of a FG beam.

Definition 2. Based on the axial displacement u, (x, z), rotation ¢ (x) of
cross section about the width direction y for a FG beam is defined as
(Duan and Li, 2015; Cowper, 1966; Murthy, 1981)

#09 = 3 f B - 2ue(x, @

where

_ (r 2
B= [E@(z -2 dA #0 ®)

As will be seen in Section 4.2, B, can be physically interpreted as the
flexural rigidity of a FG beam.

In Egs. (4) and (5), 2. signifies the reference point 1 over the cross
section of a FG beam in defining rotation (hence moment later).

Definition 3. Based on the axial displacement u, (x, z), stretch of beam
in the length direction x is defined as (Pradhan and Chakraverty, 2013;
Timoshenko, 1921)

i) = [ E@)yuy(x, 2) dA/Bo ©)

3. The deformation mode of a FG beam

In this section, the deformation mode is studied for a FG beam.

3.1. Assumptions and the condition in the beam problem

For a beam problem, following two assumptions are usually
adopted.

Assumption 1. The transverse normal stress o, of beam is too small to
be ignored (Frikha et al., 2016; Aydogdu, 2009; Simsek, 2010; Davalos
et al., 1994). Thus, we have the reduced Hook's law over the cross
section of a FG beam as®

1 Only if a reference point is introduced, the frame-indifferent rotation (hence moment)
is defined and therefore physically objective.

21In fact, Eq. (7) is directly assumed when studying curved beams (e.g. see (Kapania
and Li, 2003a; Kapania and Li, 2003b; Simo et al., 1995; Simo and Vu-Quoc, 1991)).
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