
Contents lists available at ScienceDirect

European Journal of Mechanics / A Solids

journal homepage: www.elsevier.com/locate/ejmsol

Exact solutions for the effective nonlinear viscoelastic (or elasto-
viscoplastic) behaviour of particulate composites under isotropic loading

Mohamed El Bachir Secka,b, Mihail Gărăjeua,∗, Renaud Massonb

a Aix Marseille Univ, CNRS, Centrale Marseille, LMA, F-13453 Marseille, France
b CEA, DEN, DEC, Fuel Studies Department, F-13108 Saint-Paul-Lez Durance, France

A R T I C L E I N F O

Keywords:
Nonlinear viscoelasticity
Elasto-viscoplasticity
Voids or inclusions
Two-phase composites
Composite sphere assemblage
Stress-free strain
Isotropic loading
FFT calculations

A B S T R A C T

We consider a composite sphere which consists of a spherical inclusion embedded in a concentric spherical
matrix, the inclusion and matrix phases obeying an isotropic nonlinear viscoelastic behaviour. For different
isotropic loadings (macroscopic stress or dilatation, swelling of the inclusion phase), the general solutions are
shown to depend on the shear stress distribution in the matrix. This shear stress distribution is solution of a first-
order nonlinear integro-differential equation, regardless of the inclusion viscoplastic behaviour. When the vis-
cous strain rate potentiel in the matrix is a power-law function of the von Mises equivalent stress, closed-form
solutions are given for some special cases clearly identified. Full-field calculations of representative volume
elements of particulate composites are also reported. For a moderate volume fraction of inclusions, the com-
posite sphere model turns out to be in excellent agreement with these full-field calculations.

1. Introduction

Many technological materials are particulate composites (particles
embeded in a matrix) in which the phases may undergo different stress-
free strains (thermal dilatation, physico-chemical evolution, phase
transformation, irradiation effect, …). This differential deformation of
the phases induces internal stresses in the material, even for materials
which are homogeneous elastically. If relaxation mechanisms like vis-
cous (or viscoplastic) strains appear in the phases (effect of time,
temperature, irradiation, …), this internal elastic stress field will relax
heterogeneously. The internal stresses level as well as their time evo-
lutions have to be known to assess the mechanical integrity of the
considered composite. Thats why, even for particular situations, it
would be of great interest to derive closed-form expressions of the time
evolutions of stresses and strains of a nonlinear viscoelastic (or elasto-
viscoplastic) composite submitted to differential stress-free strains. This
is precisely the goal of this paper to yield analytical results and hence to
allow a better understanding of the local distribution and time-evolu-
tion of the mechanical fields inside these particulate composites.
Otherwise, as explained hereafter, these closed-form expressions will
provide a reference solution to challenge homogenization methods for a
class of particular microstructure (the composite sphere assemblage).

The particulate composites of interest in this study have a small or
moderate volume fraction of inclusions (less than 30%) and therefore
the interactions between inclusions are weak. In this case, classically, it

is idealized by considering spherical inclusions with a gradation in size
(composite sphere assemblage (Hashin, 1962)) and such that the ratio
of the inclusions and matrix radi remain constant for all size of inclu-
sions (self-similar spheres). Moreover, the distribution of inclusions is
such that a volume filling configuration is obtained. Following (Hashin,
1962), the effective behaviour of such a microstructure is well ap-
proached by that of a composite sphere with the same volume fractions
of the phases. The analytical results mentioned above are obtained by
solving the mechanical problem on this simplified volume element.

For general microstructures, for which only some statistical in-
formations are available, when the constituents display a linear elastic
behaviour, homogenization methods provide bounds or estimates of the
effective modulus (or compliance) tensor. For instance, the “Self-con-
sistent” model (Kroner, 1978) provides reliable estimates for poly-
cristalline microstructures while the “Mori-Tanaka” one (Mori and
Tanaka, 1973) is well-suited to particle reinforced composites with a
low volume fraction of particles.

With the help of the so called correspondence principle (Mandel,
1966), these models can be easily extend to linear viscoelastic com-
posite materials to estimate the effective creep or relaxation functions.
When (at least) one of the constituents of the composite material dis-
plays a nonlinear viscoelastic behaviour, several approaches have been
proposed. The approach proposed by (Weng, 1981) consists in con-
sidering the viscous strains as homogeneous stress free strains, the as-
sociated first moment of the stress field in the phases being solutions of
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a linear thermoelastic problem. To improve these too stiff estimates, the
“affine method” (Masson and Zaoui, 1999) is based on the solution of a
linear thermo-viscoelastic problem. An alternative approach, using the
correspondence principle and internal variables formulation was pro-
posed by (Ricaud and Masson, 2009) in order to estimate the effective
response of ageing viscoelastic composites.

More recently, variational approaches ((Suquet, 1995), (Ponte
Castañeda and Suquet, 1998)) classically used for behaviours deriving
from a single potential (nonlinear elasticity or viscosity) were extended
by (Lahellec and Suquet, 2013) to nonlinear elastic-viscoplastic (and
elastic-plastic) behaviours (which derive from two potentials). Based on
the first and second moments of the fields, this approach has been
shown to yield satisfactory estimates unlike “classical” mean-fields
approaches based on the first moment of the fields.

Otherwise, analytical results obtained for particular microstructures
are useful and it can be used to improve estimates derived by other
homogenization methods. This is the case for the Eshelby's result
(Eshelby, 1959), which gives the localization tensor of an ellipsoidal
region embedded in an infinite linear elastic matrix. Eshelby's result is
used in many others models which aim to estimate the effective beha-
viour of composites with a particle-matrix microstructure, with a low
volume fraction of particles (as in the “Mori-Tanaka” model (Mori and
Tanaka, 1973)).

Composite sphere volume element is extensively used in micro-
mechanics due to the facility to derive analytical results for this simple
microstructure. When the inclusions and the matrix obey a linear elastic
behaviour, the effective properties of the composite can be bounded by
solving the composite sphere problem: a spherical inclusion surrounded
by a spherical layer of matrix (Hashin, 1962). For voids or rigid parti-
cles surrounded by a viscoplastic matrix, bounds have been derived by
considering a similar problem. In (Michel and Suquet, 1992) or, more
recently, in (Danas et al., 2008) the analytical results obtained for a
hollow sphere have been used in order to improve variational bounds
for viscoplastic porous media.

In porous plasticity, Gurson (1977) uses the hollow sphere with a
von Mises matrix, to derive its well known criterion. Gurson analysis
was extended to porous materials containing align ellipsoidal voids by
(Gărăjeu, 1996), (Gologanu et al., 1993), (Flandi and Leblond, 2005)
and (Madou and Leblond, 2012). Exact calculations by (Cazacu et al.,
2013) carried out on a hollow sphere lead to a plasticity criterion which
presents a third invariant effect. Additional results were obtained by (Le
Quang and He, 2008) for elastic-plastic matrix and by (Thoré et al.,
2009), (Anoukou et al., 2016), when the matrix phase is pressure-sen-
sitive. In addition, the composite sphere problem has also been solved
for elastic-plastic constituents behaviour (see (Chu and Hashin, 1971)).
This solution is consistent with the particular one (when inclusions are
voids) given by (Hill, 1998).

For linear viscoelasticity, estimates have been derived by using the
composite sphere model and the correspondence principle (Christensen,
1969). Here, we aim at solving the composite sphere problem when the
two phases display a nonlinear viscoelastic behaviour. To derive exact
results, we will limit these analytical developments to isotropic loading.
This isotropic loading will consist in a purely mechanical loading as
dilatation or tension applied to the outer surface of the composite
combined with a thermo-mechanical loading as a thermal strain mis-
match between the two phases, appearing with temperature variations
(thermomechanical loadings of structures, fabrication processes, etc.).
The limit case of an incompressible matrix or of a composite sphere
with homogeneous compressibility will be derived explicitly as well.
The following theoretical developments are limited to infinitesimal
strains (ε and σ denote the infinitesimal strain and Cauchy stress ten-
sors, respectively).

The paper is organized as follows. In section 2, the composite sphere
problem is formulated. The local fields in the inclusion and the equa-
tions for the local fields in the matrix are obtained in section 3. Section
4 presents the exact solutions obtained in the particular cases

mentioned above. The predictions of the model are compared to the
ones given by full-field computations of random particulate composites
in section 5.

2. The composite sphere model

We consider a composite sphere (domain V) of external radius b
containing in its center a non linear viscoelastic spherical inclusion of
radius a (domain 2) (Fig. 1), embedded in a nonlinear viscoelastic
matrix (domain 1). As shown by (Hashin, 1962), the effective elastic
potential of such a simplified volume element is a bound for the elastic
potential of more complex microstructures, obtained by spheres as-
semblage (Fig. 1).

In what follows indexes (1) and (2) are used for the mechanical fields
and coefficients in the matrix and in the inclusion, respectively. Hence,

xχ ( )1 and xχ ( )2 are the characteristic functions of domains 1 and 2,
respectively, and the volume fractions of the matrix and of the inclusion
are denoted by c1 and c2, = xc χ ( ) V1 1 , = =xc χ ( ) V

a
b2 2

3
3 and

+ =c c 11 2 ( V is the average operator on V).
The composite sphere is loaded isotropically on the outer boundary

and by submitting a uniform isotropic stress-free strain to the inclusion.
This stress-free strain may correspond to a thermal strain mismatch
between the two phases. On the outer boundary, two kinds of loadings,
which generalise relaxation and creep tests, are considered:

• homogeneous strain: =u x xt E t( , ) ( ).m
0 for ∈ ∂x V ,

• homogeneous stress: =σ x n x n xt t( , ). ( ) Σ ( ). ( )m
0 for ∈ ∂x V ,

Assuming the small strain hypothesis, the decomposition of the total
strain reads:

= + +ε x ε x ε x x δt t t ε t χ( , ) ( , ) ( , ) ( ) ( ) ,e v
0
(2)

2 (1)

where εe and εv are the elastic and viscous strains and δε t( )0
(2) is the

uniform and spherical stress-free strain applied to the inclusion (δ is the
second order identity tensor).

The non linear viscous behaviour considered in this paper derives
from a potential x σw ( , ):

= ∂
∂

= +∼ ∼ ∼

ε
σ

x x x

w

w σ w σ χ w σ χ

˙ with

( , ) ( ) ( ) ( ) ( )

v

1 1 2 2 (2)

where w1 and w2 are the dissipation potentials (convex functions) of the
matrix and of the inclusion respectively, which depend only on the
square of equivalent stress =σ σ

͠ eq
2 . The mean and equivalent stresses σm

and σeq are defined as usualy:

= = − =σ s σ δ s sσ σ σ1
3

Tr( ), , 3
2

: ,m m eq (3)

where s denotes the stress deviator.
Then, by derivation of (2) we get

Fig. 1. The composite sphere (left); the composite spheres assemblage (right).
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