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A B S T R A C T

Quasicrystals are a kind of new materials that exhibit a number of unique mechanical behaviors such as the
coexistence of the phonon and phason fields. However, they are brittle and susceptible to the failure of fracture.
As is known, both phonon and phason fields may contribute to fracture, but which one has more contribution?
This is an open question that is of both scientific and engineering significance. The main purpose of the present
paper is to answer this question. For this purpose, the axial shear fracture analysis is performed for a cylindrical
composite that is made of 1D piezoelectric quasicrystals. Because of material symmetry (i.e. transverse isotropy),
the problem is formulated in the cross section of the cylinder by using the polar coordinate system. The solution
of the governing equation is expressed as an infinite series and the generalized dislocations are introduced to
derive the singular integral equation, which is numerically solved. The computation is first verified by con-
sidering an existing example. Parametric studies then reveal that the fracture is dominated by the phason field
when the phonon-phason loading ratio is below a critical point, but it is governed by the phonon field instead if
the critical point is passed. In addition, the position of the critical point may be shifted by changing the values of
a part of material properties only.

1. Introduction

Quasicrystals are a kind of new matters first discovered in the ra-
pidly cooled Al-Mn alloys by Shechtman (see Shechtman et al., 1984).
Since then, it has been successively confirmed by experiments that
quasicrystals can occur in a number of other binary or ternary alloys
(such as Al-Co, Al-Cr, Al-Cu-Fe, Ni-V, Ni-Ti, Cr-Ni-Si, etc) and even the
piezoelectric ceramics (Ye et al., 1985; Hu et al., 1997). A unique fea-
ture of quasicrystals is that their atoms are quasiperiodically arranged
in at least one direction. According to the number of quasiperiodicity
directions, quasicrystals can be classified into three types, i.e., the 1D,
2D and 3D ones (Fan and Mai, 2004). Due to the quasiperiodic ar-
rangement of atoms, quasicrystals have many particular novel proper-
ties that are generally not possessed by the conventional crystals. For
example, their porosity, thermal conductivity, frictional coefficient and
adhesion coefficient are very low, but their electric resistivity and
abrasion resistance are quite high (Fan, 2011). Therefore, quasicrystals
have wide application prospects in the industries of optics, electronics,
communication, and so on (Dubois, 2005).

In the applications of quasicrystals, it is necessary to understand
their mechanical behavior. For this reason, the theory of elasticity of
quasicrystals has been an active research topic in the past thirty years.
Due to the quasiperiodic arrangement of atoms, the 3D-space based
theory for the conventional crystals cannot be directly applied in for-
mulating quasicrystals (Levine et al., 1985; Ding et al., 1993). Because
the quasiperiodic structures in the 3D physical space can be projected
into a higher-dimensional super space as periodic structures, the theory
of elasticity for the 1D, 2D and 3D quasicrystals is established in the 4D,
5D and 6D spaces (Fan, 2011), respectively. The mechanical fields in
the original 3D space are called the phonon fields, while those in the
complementary higher-dimensional space are called the phason fields.
These two kinds of fields are generally coupled together. Therefore, the
theory of elasticity of quasicrystals mainly formulates the phonon
fields, phason fields and their coupling (Levine et al., 1985; Ding et al.,
1993; Fan, 2011). Besides the phonon-phason coupling, quasicrystals
may also exhibit the electro-phonon and electro-phason couplings. In
order to consider them, the abovementioned elasticity theory has also
been extended to describe the quasicrystal piezoelectric behavior (Hu
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et al., 1997; Altay and Dokmeci, 2012). Using these theories, re-
searchers have solved a series of typical mechanical problems such as
the dislocations, cracks, indentation, contact, bending, vibration and
wave propagation, etc. The reader is referred to Yang et al. (2017a;
2017b; 2014), Zhao et al. (2016), Waksmanski et al. (2016), Agiasofitou
and Lazar (2014), Li et al. (2014), Wang and Schiavone (2014), Sladek
et al. (2013a), Gao (2009), Freedman et al. (2006), Chen et al. (2004),
and the references cited therein.

Among the abovementioned mechanical problems, fracture is a
main concern, because the inherent brittleness makes quasicrystals
quite sensitive to cracks (Zhao et al., 2017; Dang et al., 2017). In fact,
cracking is a typical failure mode and fracture analysis is very crucial to
the optimal design of quasicrystal structures. In these years, fracture
mechanics of quasicrystals has drawn more and more attention from the
researchers. Li et al. (1999) first considered a Griffith crack in a dec-
agonal quasicrystal and revealed that the crack-tip stress has the con-
ventional square-root type singularity. Peng and Fan (2000) proposed
the perturbation method for solving the fracture problem of a 3D ico-
sahedral quasicrystal that contains a circular crack. Yin et al. (2002)
derived the exact solution for a mode II crack in a 2D octagonal qua-
sicrystal by the method of dual integral equations. Mariano et al. (2004)
determined the distribution of phonon and phason displacements
around the crack tip in Al–Pb–Mn quasicrystals and interpreted the
phonon–phason coupling based on a stochastic aspect. Radi and
Mariano (2010) applied the extended Stroh formalism in studying the
problems of stationary straight cracks in quasicrystals. Guo and Lu
(2011) considered four cracks originating from an elliptic hole in 1D
hexagonal quasicrystals and obtained the exact solutions of the stress
intensity factors. Fan et al. (2012) presented the linear, nonlinear and
dynamic fracture theories for different kinds of quasicrystals. Sladek
et al. (2013b) proposed a meshless local Petrov-Galerkin method for the
fracture analysis of decagonal quasicrystals. Li (2013) presented the
fundamental solutions of penny-shaped and half-infinite plane cracks
embedded in an infinite space of 1D hexagonal quasi-crystal under
thermal loading. Gao et al. (2014) developed the explicit solutions for
the coupled fields around a hole in 3D quasicrystals and then derived
the weight function for a crack. Li (2014) presented the solution of the
elastic field around a planar crack in an infinite medium of 1D hex-
agonal quasicrystal, and Wang et al. (2015) solved the corresponding
problem in 2D hexagonal quasicrystal. Tupholme (2015) investigated
the problem of an anti-plane shear crack moving in 1D hexagonal
quasicrystals and obtained the solution of the stress intensity factor.
Yang and Li (2016) studied a circular hole with a straight crack in 1D
hexagonal piezoelectric quasicrystals. Fan et al. (2016) developed the
fundamental solutions of 3D cracks in 1D hexagonal piezoelectric
quasicrystals. Li (2016) solved the problem of multiple collinear cracks
in a 1D hexagonal quasicrystal strip with infinite length. Li et al. (2017)
derived the 3D fundamental thermo-elastic field in an infinite space of
2D hexagonal quasi-crystal with a penny-shaped/half-infinite plane
crack. Yang et al. (2017b) considered two electrically limited perme-
able cracks that emanate from an elliptic hole in 1D hexagonal piezo-
electric quasicrystals and obtained the fracture parameters by using the
conformal mapping and Stroh-type formalism. Zhao et al. (2017) and
Dang et al. (2017) analyzed the 3D arbitrarily shaped interfacial cracks
in a 1D hexagonal thermo-electro-elastic quasicrystal bi-material. Wang
and Ricoeur (2017) made a numerical path prediction for a crack in 1D
quasicrystals under mixed-mode loading. Tupholme (2017) derived the
analytical expressions for an embedded crack moving in 1D piezo-
electric quasicrystals that is subjected to non-uniform loading. Cheng
et al. (2017) solved the fracture problem of a finite rectangular quasi-
crystal plate by the boundary collocation method. Although so much
research has been done in this field, most papers only dealt with cracks
in infinite or semi-infinite quasicrystals. Up till now, the fracture of
finite quasicrystal structures has been scarcely investigated.

Finally, as stated above, quasicrystals have two kinds of mechanical
fields, one being phononic and the other phasonic. Both may contribute

to fracture, because cracking is essentially a mechanical process.
However, which field (phonon or phason) makes the main contribu-
tion? This question has not been clarified in existing papers, but it is
scientifically important for better understanding the fracture me-
chanism of quasicrystals and meanwhile significant for the anti-fracture
design of quasicrystal structures. Aiming at answering this question, we
consider the axial shear fracture problem of a piezoelectric quasicrystal
cylinder in the present work. The solutions of the fracture parameters
are obtained by the method of singular integral equation and verified in
a special case. The main contributor to the fracture and the related
preconditions are discussed based on the numerical results.

2. Problem formulation

Fig. 1 shows the fracture model of a piezoelectric quasicrystal cy-
lindrical composite. It consists of a central cylinder and an outer layer,
whose inner and outer radii are r1 and r2. The interface is partially de-
bonded and the central angle of the interfacial crack is α2 . A Cartesian
coordinate system is set up in such a way that the origin coincides with
the center of the cylinder, the rightward x -axis passes the center of the
crack, the y-axis points upwards and the z-axis is determined by the
right-hand rule. A polar coordinate system is also set up with the cir-
cumferential coordinate θ going anticlockwise from the positive x-axis.

The composite is polarized and quasi-periodic along the z-axis. This
means that it is isotropic in its cross section. Assume that the composite
is under axial shear. Then, the present fracture problem belongs to the
anti-plane type. In this case, the basic equations have the form
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the appendix.

In the present work, the comma followed by coordinates in the
subscripts denotes partial derivatives. Superscripts 1 and 2 are used to

Fig. 1. Fracture model of a cylindrical piezoelectric quasicrystal composite.
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