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A B S T R A C T

The present study investigates a sequence of failure events related to steady-state tearing of large-scale ductile
plates by employing the micro-mechanics based Gurson-Tvergaard-Needleman (GTN) model. The fracture
process in front of an advancing crack is approximated by a series of 2D plane strain finite element models to
facilitate a comprehensive study of mixed mode fracture behavior as well as a parameter study of the cohesive
energy and tractions involved in the process. The results from the conducted GTN model simulations are used to
define cohesive zone models suitable for plate tearing simulations at large scale. It is found that mixed mode
loading conditions can have a significant effect on the cohesive energy as well as relative displacement (in
reference to pure mode I loading), while peak traction is practically unaffected. Specifically, increasing mode II
contribution leads to monotonic increase of the cohesive energy. In contrast, the effect of mode III is more
complicated as it leads to reduction of the mixed mode cohesive energy (in reference to pure mode I loading) at
low to medium levels of mode mixity ratios (0–0.3). However, increasing mode III contribution beyond the mode
mixity ratio of 0.3, reverses this trend with cohesive energy potentially exceeding the pure mode I level when at
mode mixity ratio of 0.6 or higher. This behavior cannot be captured by the interactive cohesive zone models
that rely on a simple rotational sweep of mode I traction-separation relation. Depending on the shear mode
contribution, i.e., mode II or mode III, these models can lead to overly conservative (mode II) or unconservative
(mode III) prediction of the crack growth resistance.

1. Introduction

The main focus of the present work is on determination of the co-
hesive zone model parameters that can be used to approximate the
complex ductile fracture process evolving in large-scale plate tearing
under mixed mode loading conditions. When the tearing crack in a
large-scale plate has advanced several plate thicknesses, under mono-
tonic loading, and the failure process ahead of the crack tip has reached
a steady-state propagation, the energy dissipation proceeds through a
sequence of events which includes: i) local thinning that takes place
some distance ahead of the crack tip; ii) shear localization that subse-
quently develops on a smaller scale inside the thinning region closer to
the tip, and; iii) final separation that advances the crack (see also dis-
cussion in Nielsen and Gundlach, 2017; Nielsen and Hutchinson, 2017).
This complex plate tearing process is driven by the mechanism of void
nucleation and growth to coalescence and it can be captured by the
micro-mechanics based Gurson-Tvergaard-Needleman material model
in a full 3D framework (Felter and Nielsen, 2017). To accurately re-
present the complexity of the plate tearing process, a through-thickness

resolution that scales with the dominant void spacing (e.g. ∼ 100 μm) is
required (see also Xue et al., 2010; Nielsen and Hutchinson, 2012).
Such resolution is presently only possible for coupon specimens and
small components. Thus, engineers rely heavily on the phenomen-
ological alternatives, such as cohesive zone models embedded in shell
elements, to ensure computation times that are short enough for in-
dustrial applications (see also discussion in Li and Siegmund, 2002;
Woelke et al., 2017).

When modeling failure in thin-walled structures using shell ele-
ments, one needs to consider constraints related to the plane stress
condition, which is an inherent assumption in shell mechanics.
Maintaining a plane stress state within a shell element requires that its
in-plane dimensions are larger than the thickness. Since the height of
the localized neck is on the order of sheet thickness, only a single ele-
ment can be used to represent necking and failure. This is, of course, not
sufficient to capture the detailed geometry of local thinning. To address
this deficiency, cohesive zone models can be employed to represent the
effects that cannot be captured by large shell elements. In this case, the
cohesive zone must take over as soon as through-thickness localization
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starts and describe the remaining part of the fracture process.
Tvergaard and Hutchinson (1992) studied the relation between ductile
crack propagation and the cohesive zone parameters that govern the
fracture process. An interesting conclusion in their work is that in plane
strain, it is the peak traction and the cohesive energy that primarily
control the tearing response, whereas the shape of the traction-se-
paration relation is of minor importance. In a later work, Nielsen and
Hutchinson (2012) made an attempt to design a cohesive traction-se-
paration relation for extensive crack propagation in tough ductile plates
where the tearing energy and the peak traction were direct outcomes of
the underlying micro-mechanics. Here, by considering a cross-section of
the plate with the normal along the crack growth direction, modeled in
2D plane strain, a detailed micro-mechanical study of the slant failure
was performed using the shear extended GTN modeling framework
(Gurson, 1977; Tvergaard, 1990; Nahshon and Hutchinson, 2008). In
this approach, the cohesive zone takes over once the peak traction of
the plate cross-section has been reached and both the localization
process and final failure were treated in a rigorous, but phenomen-
ological, manner. Thus, the cohesive zone model reflects the actual
micro-mechanics that lead to crack propagation once the fracture pro-
cess has settled into a steady-state (Scheider and Brocks, 2006). Despite
only treating mode I loading, the traction-separation relation proposed
by Nielsen and Hutchinson (2012) has been successfully applied by
Woelke et al. (2013, 2015) to investigate large-scale plate tearing. By
adopting the micro-mechanics based traction-separation relation, a
near perfect match to experimentally measured load-deflection curves
was obtained for the macroscopic structural response. As an aside,
Woelke et al. (2015) concluded that for plane stress conditions, the
shape of the traction-separation relation is also important for accurate
prediction of crack growth resistance. However, these considerations
were limited to pure mode I loading, whereas real life structures often
encounter mixed mode loading. A common practice in modeling mixed
mode loading with cohesive zone relies on essentially a rotational
sweep of the normal mode I traction-separation relation, T δ( )n , into the
tangential separation (between fracture surfaces) space such that the
traction curves become T δ( )t1 and T δ( )t2 in pure mode II or pure mode
III, respectively (see Eq. (1)). The work of separation is thus tradi-
tionally assumed to be unchanged between modes (Li and Siegmund,
2002) and mode mixity is calculated as
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Here, Γ0 is the work of separation (equal for all modes), δn is the normal
separation, δt1 and δt2 are the tangential separations of the fracture
surfaces related to mode II and mode III separation, respectively. The
present study will show that this approach does not represent reality in
ductile plate tearing under mixed mode loading. It will be demonstrated
that after peak traction is reached, the work of separation depends on
mode mixity. The goal of the current study is twofold: i) to highlight the
effects of mode mixity on the overall cohesive energy as well as other
parameters defining the traction-separation relation, and; ii) to develop
a new mixed mode traction-separation relation that readily fits into the
framework of combining plane stress shell elements with cohesive zone
modeling without sacrificing the accuracy for mixed mode loading.
Details of the traction-separation relations will be developed through
micro-mechanics modeling, which in turn will form the basis for
guidelines on how parameterized traction-separation relations can be
constructed without compromising accuracy. The employed modeling
framework has been adopted from Nielsen and Hutchinson (2012), but
with modifications to take out-of-plane actions into account.

The paper outlines the constitutive relations and finite element
model in Section 2. The problem formulation is described in Section 3,
after which the cohesive zone model is defined in Section 4 by identi-
fying key parameters to be extracted from the micro-mechanics based
numerical simulations. Results are given in Section 5 with focus on

improving accuracy within the field of cohesive zone modeling of large-
scale plate tearing. Conclusions are listed in Section 6.

2. Model: constitutive relations and finite element formulation

2.1. Material description

The undamaged (matrix) material in this study is assumed to follow
a true stress-logarithmic strain power hardening relation described as:
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where σy is the initial yield stress, E is the Young's modulus, and N is the
hardening exponent. To account for the softening effect of the damage
that evolves during severe plastic straining, the material is assumed to
be governed by void growth to coalescence and to follow the flow rule
for a porous ductile GTN material (Gurson, 1977) with the yield surface
modified by Tvergaard (1981).
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Here, =σ s s3 /2e ij
ij is the effective macroscopic Mises stress, with

= −s σ G G σ /3ij ij ij
kl

kl being the stress deviator where Gij and Gij are the
co- and contravariant component of the metric tensor, respectively,
associated with the deformed geometry. The microscopic stress in the
matrix material is denoted σM , whereas q1 and q2 are fitting parameters
introduced by Tvergaard (1981), and f * is a function of the porosity
that takes void coalescence into account. Tvergaard and Needleman
(1984) suggested the following phenomenological model to accelerate
the damage increase once micro-voids link up in the coalescence pro-
cess:
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where f is the accumulated damage (or porosity), fC and fF are the
critical and final porosity, respectively. The ultimate damage, fU , is
defined as q1/ 1.

The development of damage in the material is partly controlled by
void growth and partly a shear contribution, such that the total rate of
damage reads:

= +f f f˙ ˙ ˙
growth shear

where a damage contribution from nucleating voids is omitted for
clarity of results in the present study. Void growth follows from plastic
incompressibility and can be expressed as:
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p

where η̇ij
p is the increment of the plastic strain tensor. It is known,

however, that evolution of the damage predicted by the GTN model
stops if the stress triaxiality goes to zero, e.g. for a pure shear loading
case. In order to investigate the effect of shear damage, the shear ex-
tension introduced by Nahshon and Hutchinson (2008) will be con-
sidered as part of the analysis. The governing equation for the shear
contribution to total damage is:
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where = −σω J σ( ) 1 (27 /(2 ))e3
3 2. Here, J3 is the third invariant of Cauchy

stress deviator and kω is the amplification factor for the shear con-
tribution, which typically lies in the range of [0; 3] (see also Tvergaard
and Nielsen, 2010). It is worth mentioning that the Nahshon-Hutch-
inson extension is purely phenomenological and it is, therefore, only
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