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Abstract

The fundamental equations for Form II of Mindlin’s second strain gradient elasticity theory
for isotropic materials are first derived. A corresponding simplified formulation is then proposed,
with six and two higher-order material parameters for the strain and kinetic energy, respectively.
This simplified model is still capable of accounting for free surface effects and surface tension
arising in second strain gradient continua. Within the simplified model, at first, surface tension
effects appearing in nano-scale solids near free boundaries are analyzed. Next, a thin strip un-
der tension and shear is considered and closed-form solutions are provided for analyzing the free
surface effects. Expressions for effective Poisson’s ratio and effective shear modulus are proposed
and found to be size-dependent. Most importantly, for each model problem a stability analysis
is accomplished disallowing non-physical solutions (befallen but not exclusively disputed in a re-
cent Form I article). Finally, a triangular macro-scale lattice structure of trusses is shown, as a
mechanical metamaterial, to behave as a second strain gradient continuum. In particular, it is
shown that initial stresses prescribed on boundaries can be associated to one of the higher-order
material parameters, modulus of cohesion, giving rise to surface tension. For completeness, a nu-
merical free vibration eigenvalue analysis is accomplished for both a fine-scale lattice model and
the corresponding second-order continuum via standard and isogeometric finite element simula-
tions, respectively, completing the calibration procedure for the higher-order material parameters.
The eigenvalue analysis confirms the necessity of the second velocity gradient terms in the kinetic
energy density.
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1 Introduction

Material modelling, in its broad meaning, is a fundamental task to be accomplished in order to
adequately describe and predict the mechanical behaviour of solids. Although all materials are known
to have a discrete nature, real physical systems can be modelled by the classical theories of continuum
mechanics introduced and at first developed by such famous names as Piola, Poisson, Navier, Cauchy,
and many others. The classical continuum models assume that the characteristic length scale of the
material, e.g., grain or inhomogeneity size, is much smaller than the representative volume of the
underlying averaging principles. This assumption is not necessarily valid, however, when modelling,
on one hand, micro- and nano-scale objects such as MEMS or NEMS, or on the other hand, meso- and
macro-scale discrete systems such as mechanical metamaterials or lattice structures. At nano-scale,
due to the increasing surface-to-volume ratio, most materials demonstrate a very strong size-dependent
behaviour. As reported in many works (see [1] and [2], for instance), atoms lying near a free surface are
in the presence of different bindings than atoms in the bulk due to a redistribution of the underlying
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