
Contents lists available at ScienceDirect

European Journal of Mechanics / A Solids

journal homepage: www.elsevier.com/locate/ejmsol

Response of an infinite beam on a bilinear elastic foundation: Bridging the
gap between the Winkler and tensionless foundation models

Yin Zhanga,b,∗, Xiaoming Liua,b, Yujie Weia,b

a State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
b School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

A R T I C L E I N F O

Keywords:
Beam
Winkler foundation
Tensionless foundation
Bilinear foundation

A B S T R A C T

The response of an infinite beam on an elastic foundation depends on the property/modeling of the foundation.
There is a qualitative difference between the responses of a beam when it is on the Winkler foundation and on
the tensionless foundation. A bilinear elastic foundation model, which describes the different behaviors of the
elastic foundation in the tensile and compressive zones with two different foundation moduli, is proposed and a
straightforward computational method is also formulated. The Winkler and tensionless foundations are shown to
be the two special cases of the bilinear elastic foundation model. With this bilinear elastic foundation model, a
more general method of modeling an elastic foundation is provided, which can be of some help to the modeling
of the support of the ballastless high-speed railway.

1. Introduction

Fig. 1(a) shows an infinite beam on an elastic foundation subjected
to a concentrated load, which, for many years, has been an important
model to analyze the deflections and stresses of a railroad track (Ang
and Dai, 2013; Bian et al., 2014; Choros and Adams, 1979; Hetényi,
1946; Kerr, 1972, 1974; 1976; Lancioni and Lenci, 2010; Lin and
Adams, 1987; Tran et al., 2014). In a regular ballasted railroad, the rail-
tie frame is laid on a layer of crushed stone called ballast (Kerr, 1974).
The rail actually lifts off its ballast in front of, and behind a moving
train (Choros and Adams, 1979; Lin and Adams, 1987). Once the lift-off
occurs, the ballast layer as an elastic foundation cannot exert any
(tensile) force on the rail (Choros and Adams, 1979; Lin and Adams,
1987). While, the Winkler foundation model assumes that there is only
one foundation modulus, which physically means that the Winkler
foundation reacts the same in tension as in compression. Although
nowadays the Winkler foundation model is still widely used to analyze
the rail system (Ang and Dai, 2013; Tran et al., 2014), its usage is
motivated more by the desire for mathematical simplicity than by
physical reality (Lin and Adams, 1987). Therefore, the tensionless
foundation model is more appropriate and often applied to study the
contact between the rail and ballast (Choros and Adams, 1979; Lancioni
and Lenci, 2010; Lin and Adams, 1987). The tensionless foundation is
also called the foundation that reacts in compression only (Weitsman,
1970) or the unilateral springs/supports/foundation (Bhattiprolu et al.,
2013, 2014; 2016; Dempsey et al., 1984; Lancioni and Lenci, 2010).

Because there is no bonding force between a structure and the ten-
sionless foundation, their contact is referred to as the unbonded contact
(Weitsman, 1969); because a structure can separate/lift off the ten-
sionless foundation, which results in a decreasing contact area, their
contact is also referred to as the receding contact (Keer et al., 1972).
However, when the tensionless foundation model is applied to the
ballastless track system, which has been extensively used in the high-
speed railway, a serious problem may arise: The ballastless railway
support can take some tension (Bian et al., 2014). A ballastless high-
speed railway consists of the following two parts (Bian et al., 2014): (1)
the track superstructure (rail, fastener, track slab, cement asphalt
mortar (CAM) layer and concrete base) and (2) the geotechnical sub-
structure (roadbed, subgrade and subsoil). A major difference between
the ballastless and ballasted tracks is the concrete track slabs replacing
the ballast layer (Bian et al., 2014). The fasteners tightly bond the rail
with track slab and the CAM layer bonds the track slab with the con-
crete base, which makes the rail separation from its support extremely
difficult if there is any. Furthermore, the support capability of bearing
tensile stress may become substantial because of the tight bondings
between the rail/track slab, track slab/CAM and CAM/concrete base,
etc. Actually, tensile stress was indeed detected by the sensors em-
bedded in the roadbed layer underneath the concrete base (Bian et al.,
2014). Recent elasticity analyses show that even for a homogeneous
elastic continuum modeled as an elastic half-space, its surface responses
to tension and compression are intrinsically different (Zhuo and Zhang,
2015a, 2015b). This asymmetric response to tension and compression is
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also the mechanism responsible for the period-doubling behavior of the
perfectly bonded film/substrate system in a post-buckling region (Brau
et al., 2011). A bilinear elastic foundation model with two different
foundation moduli of k1 and k2 as shown in Fig. 1(a) is thus proposed to
model the different behaviors in the tensile and compressive zones. The
bilinear behavior of the ballastless railway support is expected because
of its heterogeneous multilayer structure and the interface properties.
In this bilinear model, the Winkler foundation and the tensionless
foundation are the two special cases of =k k/ 12 1 and =k k/ 02 1 , respec-
tively.

The contact mechanics of a beam on the tensionless foundation has
been intensively studied for many years and various solution methods
have also been developed. Although the Lagrange multiplier or penalty-
based algorithms in several finite element analysis (FEA) commercial
softwares are capable of modeling the unilateral constraint, the com-
putational costs are very expensive in both storage and CPU time
(Silveira et al., 2008). Furthermore, the complexity of the tools required
to perform a comprehensive study or analyses such as design optimi-
zation, feedback control or stability etc can be infeasible for a full-scale
FEA simulation (Attar et al., 2016; Silveira et al., 2008). There have
always been interests to develope the methods to reduce the compu-
tational cost in an extensive parametric study of tensionless contact
(Attar et al., 2016). A major difficulty in the tensionless contact pro-
blem is the unknown property of contact area, which makes the pro-
blem nonlinear and extremely difficult to be solved in some scenarios.
Therefore, recent studies have been focusing on developing efficient
methods of determining the contact area (Attar et al., 2016; Bhattiprolu
et al., 2013, 2014; 2016; Ma et al., 2009a, 2009b; 2011; Nobili, 2013;

Silveira et al., 2008). The incremental-iterative methods (Attar et al.,
2016; Bhattiprolu et al., 2013; Silveira et al., 2008) update the gov-
erning equation/stiffness matrices in each iteration by tracking the
structure deflections and continue until the convergence, which can still
involve significant computation efforts. For example, a large number of
modes (up to 20) in the Galerkin method are required to achieve a
satisfying accuracy (Bhattiprolu et al., 2013). The transfer displacement
function method (Ma et al., 2009a) reduces the computation by solving
the contact/noncontact zones and deflections one by one. Besides, the
tensionless contact properties can also be utilized to reduce the com-
putational efforts. For example, there is an outstanding characteristics
in the beam tensionless contact subjected to a concentrated load: Only
one contact area exists for both the infinite (Tsai and Westmann, 1967;
Weitsman, 1970, 1972) and finite (Zhang, 2008; Zhang and Murphy,
2004, 2013) beams. Even in the contact dynamics with a moving con-
centrated load, the one contact area conclusion still holds as far as the
moving speed of the concentrated load is less than the critical speed of

EIk m4 /1
24 (EI , m are the beam bending stiffness and mass per unit

length) (Weitsman, 1971). It needs to keep in mind that under complex
loads, the scenario of multiple contact areas can occur (Ma et al.,
2009a, 2009b; 2011; Nobili, 2013). The zero points as called by Hetényi
(1946) and shown in Fig. 1(b) are the points at which the beam de-
flection is zero. For the tensionless contact, the zero points are also the
lift-off/separation points demarcating the contact areas (Weitsman,
1970). For an infinite beam, by reducing the two zero points to one via
the symmetry property, the analytical (Weitsman, 1970) or approx-
imate analytical solution (Weitsman, 1972) can be derived.

Compared with the abundant literature of the tensionless contact,

Fig. 1. (a) Schematic diagram of an infinite beam on a bilinear elastic foundation subjected to a concentrated load P. When the beam bends downwards/upwards, the
foundation is with compression/tension and the corresponding foundation modulus is k1/k2. When =k 02 , the foundation is the tensionless foundation; when =k k2 1,
it is the Winkler foundation. (b) The coordinate system and deflection areas. The zero points (ξi), which demarcate the areas, are marked with circles. Area I is the
downward compressive deflection area with the concentrated load P and in comparison, area III is the other downward compressive deflection areas with no P. Area
II are the upward tensile deflection areas.
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