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A B S T R A C T

In this paper, the extended displacement discontinuity (EDD) boundary element method is developed to analyze
a penny-shaped crack in the isotropic plane of a three-dimensional (3D) transversely isotropic thermal piezo-
electric semiconductor (PSC). The generalized Almansi's theorem and the operator theory are used to obtain the
general solutions under generalized loading. The fundamental solutions for extended displacement dis-
continuities (EDDs) applied on the penny-shaped crack surface, which include the displacement, electric po-
tential, carrier density, and temperature discontinuities, are derived. By using the EDD boundary element
method, the EDD under mechanical, electrical and heat loading near the edge of a penny-shaped crack is cal-
culated. The stress and heat flux intensity factors of the crack are obtained. The influence of uniform and non-
uniform heat loadings on the fracture of 3D transversely isotropic thermal PSCs is investigated.

1. Introduction

Piezoelectric semiconductors (PSCs) are materials that have piezo-
electric and semiconductor properties. They have been used extensively
in smart structures, electromechanical devices and systems, such as the
multifunctional sensors, acoustic phonon spectroscopy, and im-
plantable nanogenerators, because of their excellent force, electrical
properties and a variety of energy conversion capabilities (Wang, 2007;
Jenkins et al., 2015; Mante et al., 2015; Li and Wang, 2017). In 1960,
Hutson discovered PSCs (Hutson, 1960). Shortly afterwards, Hutson
and White showed that mechanical fields and mobile charges can in-
teract with each other, and the interaction was called the acousto-
electric effect (Hutson and White, 1962). Since then, many devices have
been developed for the discovery of the properties of ZnO nanowires
stemming from the piezoelectric-semiconducting coupling (Wang et al.,
2006). Zhang et al. (2012) and Liu et al. (2015) reviewed the funda-
mental theories of piezotronics and piezo-phototronics, respectively.
Wen et al. (2015) reviewed new development and progress in the pie-
zotronics field.

PSCs are very sensitive to internal defects such as cracks and cavities
(Bykhovski et al., 1996; Ancona et al., 2012), and the defects can re-
duce the reliability of devices (Del and Joh, 2009). Hence, analysis of
cracks in PSCs is important for intelligent device design and perfor-
mance. Generally speaking, there are analytical (e.g., Zhao et al., 1998)

and numerical (e.g., Lai et al., 2017; Wang et al., 2017) solutions for
crack problems. For piezoelectric media, Zhao et al. (1997a, 1997b)
derived the analytical solution for an isolated crack in a three-dimen-
sional piezoelectric solid. Because of the mathematical complexity,
advanced numerical methods are required for piezoelectric solids. The
extended finite element method (XFEM) (Bui and Zhang, 2012; Bui,
2015; Liu et al., 2013; Sharma et al., 2013; Yu et al., 2015; Wang et al.,
2016), the boundary element method (BEM) (Pan, 1999; Lei et al.,
2014, 2015), the distributed dislocation method (Sharma et al., 2016,
2017), and the extended displacement discontinuity (EDD) method
(Fan et al., 2014a,b) were developed to simulate piezoelectric solids. In
recent years, research on the fracture of PSCs has attracted wide at-
tentions (Sladek and Sladek, 2014; Zhao et al., 2016a; Fan et al., 2016).
Yang (2005) studied an anti-plane semi-infinite crack in a PSC, and
obtained an explicit solution for the electromechanical field near the
crack tip. Hu et al. (2007) analyzed a finite Mode III crack in a PSC of
6mm crystals and showed how the fracture behavior affected the
semiconducting properties. Sladek and Sladek (2014) studied an in-
plane crack problem in finite domains under mechanical and electric
loading in PSCs with static and transient boundary conditions. Using
the meshless local Petrov-Galerkin method, they showed the influence
of the electric conductivity on intensity factors of cracks in homo-
geneous conducting piezoelectric solids. Sladek et al. (2015) also in-
vestigated the influence of electric conductivity on intensity factors of
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cracks in functionally graded conducting piezoelectric materials. Re-
cently, Fan et al. (2016) proposed a piezoelectric-conductor iterative
method (PCIM) for fracture analysis of PSCs under combined mechan-
ical loading, electric strength field and electric current. For three-di-
mensional (3D) cases, Zhao et al. (2016b) extended the displacement
boundary integral equation method to analyze the singularity of near-
border fields of arbitrarily shape of planar cracks in the isotropic plane
of a 3D transversely isotropic PSC. Using the EDD method, Zhao et al.
(2016) studied penny-shaped cracks in 3D PSCs.

Semiconductor devices, such as high temperature sensors, are
usually accompanied by heat flux or thermal loading during the man-
ufacture and service (Morkoç et al., 1994; Oszwaldowski and Berus,
2007). Thermal effects must be considered in analyzing semiconductor
structures. Mindlin (1961) first proposed the theory of thermo-piezo-
electricity. Since then, the fracture behavior of piezoelectric solids
under thermal loading has been investigated in a number of studies. Yu
and Qin (1996a, b) studied the fracture and damage behaviors of a
cracked piezoelectric solid under coupled thermal, mechanical and
electrical loads. Recently, thermal crack problems in piezoelectricity
have been extensively investigated, including static thermal fracture
problems (Niraula and Noda, 2002; Shang and Kuna, 2003; Ding et al.,
2000; Wang and Noda, 2004; Zhong and Zhang, 2013; Yang et al.,
2014; Zhang and Wang, 2015; Li and Lee, 2015) and transient thermal
fracture problems (Wang and Mai, 2002; Dai and Wang, 2005; Ishihara
and Noda, 2005; Sladek et al., 2007, 2010; Ueda, 2008; Liu et al.,
2014). Sladek et al. (2014) studied the effect of the initial electron
density on the intensity factors and energy release rate under a tran-
sient thermal load in PSCs. Zhao et al. (2017) investigated the stress and
heat flux intensity factors at the crack tip and the effect of temperature
on the fracture behavior under a static load. Motivated by this issue,
this work investigated the penny-shaped crack problem in a 3D PSC
under thermal and mechanical loads. Section 2 presents the basic
equations for thermal PSCs subjected to a thermal load. In Section 3,
general solutions for EDDs are derived. Section 4 presents the funda-
mental solutions for uniform displacement discontinuities applied on
penny-shaped cracks. In Section 5, the EDD boundary element method
is developed to analyze a crack on which distributed extended loadings
are applied. Numerical results are presented in Section 6, and some
conclusions drawn from the present study are given in Section 7.

2. Basic equations

In the absence of body forces, electric charge, electric and body heat
sources, the governing equations for 3D n-type PSCs can be written as
follows
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where σij, Di, and Ji are the stress tensor, the electric displacement
vector, and the electric current, respectively, hi is the heat flux, and

=i j x y z, , , . +ND is the known donor density and it can be assumed to be
uniform. +n Δn( )0 is the entire electron density where = +n N ,D0 Δn is

the deviation of the electron density from n0, and = +n n Δn0 . q de-
notes the electric charge of an electron. The charge equation (1b) can
then be written as
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By following Hutson and White (1962), Sladek et al. (2014) and
Zhao et al. (2016b), the linear constitutive equations for a 3D n-type
PSC can be written as
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where u v w ϕ( , ), , and θ are the mechanical displacements, the electric
potential, and the temperature change, respectively, which are known
as extended displacements. c ,ij e ,ij ε ,ij d ,ij μ ,ij and p3 are the elastic,
piezoelectric, dielectric, carrier diffusion constant, electron mobility,
and pyroelectric material coefficients. βij denotes the heat conduction
coefficients. The stress-temperature modulus λij can be expressed
through the stiffness coefficients and the coefficients of linear thermal
expansion αkl by (Sladek et al., 2014)

=λ c α ,ij ijkl kl (3)

where cijkl is the elasticity tensor, αkl can be obtained by
= + +α α δ δ α δ δ α δ δkl k l k l l11 1 1 22 2 2 33 31 3, and δij represents the Kronecker

delta.
Substituting Eqs. (2a-2d) into Eqs. (1a-1e), the governing equations

become
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