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A B S T R A C T

Classical gyroscopic continua include axially moving materials and spinning structures. The gyroscopic effect of
the axially moving material is pronounced via the gyroscopic coupling among the basis functions in the same
motional direction. On the other hand, the gyroscopic coupling of the spinning structure acts in the two different
directions of motion. In this paper, we study the dynamics of a beam with both axial moving motion and
spinning motion as a prototype of bi-gyroscopic continua. The influence of bi-gyroscopic effects on the natural
frequencies, modes, and stability is investigated by an analytical method applied to the discretized equations of
the axially moving and spinning beam. Distinct bifurcation series of the eigenvalues and corresponding physical
interpretations are discussed by numerical display of the modal motions. The complex modes describing both
whirling motions and traveling waves are investigated in detail for such bi-gyroscopic system. New interesting
phenomena have been analyzed numerically and important conclusions have been drawn for such bi-gyroscopic
system.

1. Introduction

From a broader perspective, mechanical structures that can vibrate
about a state of mean rotation are classified as gyroscopic dynamic
systems. The gyroscopic effect comes from the Coriolis force measured
on the rotating frame. Spinning flexible structure is a straightforward
example of the gyroscopic continua. Another example is the axially
moving material, for which the rotating frame is observed on the slope
variation of the overall contour.

In the case of spinning structure as presented in Fig. 1(a), the
spinning velocity is Ω and the transverse displacement in Z direction is
W, and the corresponding velocity is ∂ ∂W T/ . The Coriolis force on a
small element caused by the Z directional motion is ∂ ∂Ω W T2 ( / ), along
the Y direction. On the other hand, if the displacement and velocity in Y
direction is measured, the Coriolis force in Z direction will be gener-
ated. Hence, the Coriolis force of the spinning structure makes every
element of the continuum vibrating in the YZ plane, showing the elliptic
whirling motions. The gyroscopic coupling between the two transverse
directions is the feature of the spinning bodies.

In the case of axially moving structure as presented in Fig. 1(b), the
axially moving velocity is U and the transverse displacement in Z di-
rection is W. An arbitrary element of the flexible structure, excluding

the supporting ends, involves a rotating velocity ∂ ∂ ∂W X T/2 . The Cor-
iolis force is then ∂ ∂ ∂U W X T2 ( / )2 along the transverse Z direction. Si-
milarly, the motion in the Y direction will cause Coriolis force in the
same direction. Hence, contrary to the spinning structures, the two
transverse directional motions are not coupled gyroscopically through
the Coriolis force for the axial moving structures. Actually, the gyro-
scopic coupling acts on different basis functions along the same trans-
verse direction.

From the above discussions, two types of gyroscopic continua
emerge: spinning structures and axially moving structures. The gyro-
scopic effects present different phenomena in the two types of gyro-
scopic continua: (a) the two transverse directions of the spinning
structure are gyroscopically coupled by the Coriolis force, which leads
to whirling motions in the YZ plane, and (b) the basis functions on the
same transverse direction of the axially moving material are gyrosco-
pically coupled by the Coriolis force, which leads to travelling waves in
XZ and XY plane, independently.

The presence of the gyroscopic terms in the governing equations of
the gyroscopic continua limits analytical results, but enriches the dy-
namical behaviors dramatically. In the study of spinning well balanced
axisymmetric structures, like spinning disks (Fang et al., 2014; Genta,
2005), spinning rings (Cooley and Parker, 2014; Genta and Silvagni,
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2013; Kim and Chung, 2002), spinning beam (Wu et al., 2014) and
spinning disk-spindle systems (Parker and Sathe, 1999a, b), it is found
that the natural frequency of each mode for the stationary structure
branches into two because the spinning motion couples the two trans-
verse directions and transfers the two isolated equal frequencies into
distinct ones. In general, these branches represent the natural fre-
quencies for the forward and backward whirling motions. In the study
of axially moving materials, like pipes conveying fluid (Païdoussis,
1998; Yu et al., 2014), axially moving strings (Chen, 2005; Parker,
1998; Wickert and Mote, 1989) and axially moving beams (Öz and
Pakdemirli, 1999; Parker, 1998), it is concluded that the natural fre-
quencies will decrease with the increasing axial velocity until the di-
vergence occurs, beyond which the system loses its stability. However,
due to the gyroscopic terms, the axially moving structure may regain
stability and, with further increase of velocity, loses stability by flutter.
Due to the gyroscopic effect, the ‘travelling waves’ of the axially moving
material during modal motions have been studied, which are different
from the ‘standing waves’ of the static structure (Yang et al., 2016).
From the Galerkin discretized point of view, the ‘standing waves’ are
maintained because the basis functions (sine functions for the both end
supported case) are exactly the solutions of the static structure and
‘travelling waves’ are caused due to the fact that the solutions are
composed of coupled basis functions with phase differences.

The differences of the spinning structure and axially moving mate-
rial as mono-gyroscopic continua have been listed in Table 1. The gy-
roscopic dynamics found in the two types of gyroscopic continua are
different for both the coupling style and the vibration phenomena. One
question then arises from the comparison: what dynamics will arise if
the structure undergoing both spinning and axial motion? In the present
study, we answer this question by proposing a novel idea of the bi-
gyroscopic effect: a gyroscopic effect from both spinning and axially
moving motion, which belong to two different types of gyroscopic
couplings.

In the engineering field, the structures with both spinning and axial
motion are used, among other applications, as a component in drilling
machines (Arvajeh and Ismail, 2006; Rincon and Ulsoy, 1995) and
drilling oil pipes (Pei et al., 2013; Zhang and Miska, 2005). In the

available dynamical studies of the drilling slender continua, the axial
motion has been usually neglected. On the other hand, from the theo-
retical point of view, a combination of spinning and axial motion may
lead to rich dynamics of the gyroscopic system. In this paper, a proto-
type of bi-gyroscopic continua is investigated based on the beam model
undergoing both spinning and axial motion. The features of the bi-gy-
roscopic couplings and modal motions are studied and discussed. The
bifurcation series of the dynamics based on the eigenproblem is ana-
lyzed in detail, which may provide a foundation for further investiga-
tions on structures with bi-gyroscopic couplings.

2. System model

A circular flexible beam simply supported by two joints with dis-
tance l, is undergoing both spinning motion with constant velocity Ω
and axial moving motion with constant speed U, as shown in Fig. 2. The
stiffness, cross section area and density of beam material is EI, A and ρ,
respectively. To derive the displacements of the flexible beam, two sets
of rotating reference coordinates are used: OXYZ is a spinning reference
frame with spinning velocity Ω along X axis; PX1Y1Z1 is reference frame
with both spinning and axial moving motion. Without the spinning
velocity, the two reference frames recover the Euler and Lagrange de-
scriptions of the axially moving material, respectively. The deflections
of an arbitrary moving beam element can be observed in the PX1Y1Z1
frame. However, the final visual displacements of the axis line of the
beam are measured in the rotating frame OXYZ (see Fig. 3).

The transformation relations of the two rotating references are
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If the transverse displacements V and W of an arbitrary point on the
beam are defined on Y1 and Z1 direction, respectively, the position
vector of such point P1 in the OXYZ frame is
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Further, the velocity can be derived by the first derivative of (2) as

= + ⎛
⎝

∂
∂

+ ∂
∂

− ⎞
⎠

+ ⎛
⎝

∂
∂

+ ∂
∂

+ ⎞
⎠

U V
T

U V
X

ΩW W
T

U W
X

ΩVv i j k.
(3)

Then the kinetic energy and potential energy are, respectively,

Fig. 1. The two types of gyroscopic continua. (a) Spinning structure; (b) Axially moving
structure.

Table 1
Comparison of the two types of gyroscopic continua.

Modal
motions

Coupling Gyroscopic features

Spinning
structure

Whirling Two transverse
directions coupled

One frequency braches
into two.

Axially moving
structure

Travelling
wave

Basis functions in
the same direction
coupled

Two stable regions exist;
Bifurcate from stability to
divergence, and then
from restability to flutter.

Fig. 2. Diagram of beam undergoing both spinning and axial moving motion.

Fig. 3. Deformation of the structure.
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