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A B S T R A C T

This paper presents a study on the dynamic response of beams on elastic foundations, subjected to a uniformly
moving oscillator. Using a finite element model programmed within a MATLAB environment the response of the
system is studied for three different types of mechanical behaviour of the foundation: (a) linear elastic (classical
Winkler model), (b) nonlinear elastic (in which the foundation reaction displays a cubic dependence on the beam
displacement) and (c) bilinear elastic (with different compressive and tensile stiffnesses). The effects of the
oscillator's natural frequency and velocity and of the foundation's stiffness and damping are investigated. In
particular, critical velocities of the oscillator and ranges of velocities for which the system is dynamically un-
stable are numerically determined for the first time in the above mentioned nonlinear cases.

1. Introduction

The interaction between elastic structures and moving mechanical
systems has been a topic of interest for well over a century and,
nowadays, such interest has been even more stimulated by the current
progresses in transportation systems. For some types of soils, modern
high-speed trains are able to move with velocities comparable with the
minimal phase velocity of wave propagation in the elastic supporting
structure (Metrikine and Verichev, 2001), causing vibrations whose
amplitudes may be significantly higher than the deflections due to static
loads. These vibrations may damage the supporting structures and
seriously influence the comfort and safety of the passengers. Similarly,
high vibrational amplitudes may be also encountered in other problems
of mechanical or structural engineering, such as high-speed precision
machining, advanced propulsion concepts like railguns, aircraft carriers
or transportation cables (Yang et al., 2000). Therefore, it is interesting
to study the dynamic response of structures supporting moving me-
chanical systems in order to mitigate the above mentioned effects.

The elastic structures are most commonly represented by a finite or
infinite beam supported by a uniform or non-uniform viscoelastic linear
or nonlinear foundation. Various foundation models such as Winkler,
Pasternak, Vlasov or Reissner and either Euler-Bernoulli or Timoshenko
beam models have been used. Concerning the moving system, three
types of models have been mainly employed in the literature, thus
defining different mechanical problems: (i) the moving oscillator (spring-

mass-dashpot) problem, which is considered when the stiffness of the
moving subsystem is finite and its inertial effects are not negligible; (ii)
the moving mass problem, which may be conceived as a subcase of the
moving oscillator problem when the stiffness of the moving subsystem
approaches infinity; (iii) the moving load problem, which also neglects
the inertia of the moving subsystem.

The nonlinearity of the moving mass and moving oscillator pro-
blems poses some mathematical difficulties that do not occur in the case
of the moving load problem. Many examples on how these mathema-
tical difficulties have been tackled may be found in the literature re-
lated to the moving mass problem and some of them are briefly reported
next. Hutton and Counts (1974) used sine series for the spatial ap-
proximation of the beam deflection and numerically solved the re-
sulting time dependent system of second-order ordinary differential
equations. Stanišić (1985) presented an approximated method based on
an eigenfunction series expansion for the beam deflection with time
dependent coefficients. An alternative formulation was followed in the
work by Sadiku and Leipholz (1987), who proposed a Green's function
approach for the moving load and the moving mass problems for a fi-
nite beam, leading to an integro-differential equation in terms of the
beam displacements whose solution can be obtained to any desired
degree of accuracy. Lee (1996) investigated the onset of the separation
between the moving mass and the beam by using the modal analysis
method and solving the set of coupled ordinary differential equations
through the fifth-order Runge-Kutta scheme. Analytical solutions for
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the case of an infinite beam excited either by a moving harmonic force
or by a moving mass, were provided by Duffy (1990) using Fourier and
Laplace transforms. The stability of the oscillations of a mass moving at
constant velocity along an infinite Euler-Bernoulli beam was studied by
Denisov et al. (1985) and by Metrikine and Dieterman (1997). In both
works it was proved that besides resonance, occurring when the velo-
city of the moving mass becomes equal to the minimum phase velocity
of waves in the beam-foundation system, also dynamic instabilities may
occur induced by anomalous Doppler waves radiated by the moving
object. These instabilities are characterized by vibrations of the system
whose amplitude grows exponentially in time. The region of instability
of the system was determined with the help of the D-decomposition
method. The same technique was applied by Wolfert et al. (1998) in the
study of the stability of two masses moving at a constant distance along
an Euler-Bernoulli beam on a viscoelastic foundation.

The moving oscillator problem has also been the subject of many
works. Pesterev and Bergman (1997a, b) considered a linear con-
servative finite beam carrying a moving undamped oscillator and pro-
posed a mathematical formulation that allowed for the solution of the
interaction problem in a series of the eigenfunctions of the elastic
system. Then, the time-dependent coefficients of the expansion were
obtained by solving a set of linear ordinary differential equations. A
later extension of the method incorporated proportional damping
(Pesterev and Bergman, 1998). Based on the previous approach,
Omenzetter and Fujino (2001) examined the vibrations of a pro-
portionally damped linear moving multi-degree-of-freedom oscillator
interacting with the beam at several contact points. Similarly to the
approach of Sadiku and Leipholz (1987), Yang et al. (2000) analysed a
spring-mass moving oscillator, solving by numerical integration the
final integral equation for the beam displacement. Fourier transforms,
for both space and time variables, were used by Bitzenbauer and Dinkel
(2002) to find the dynamic response of a linear multi-degree-of-
freedom system moving along an infinite beam; the system was excited
by the vertical imperfections of the track and its initial conditions were
neglected. Muscolino and Palmeri (2007) studied the response of beams
resting on viscoelastic foundations and subjected to moving oscillators.
Metrikine and Verichev (2001) investigated the stability of an oscillator
moving at constant velocity along an infinite Timoshenko beam on a
foundation and determined the instability domains in the space of the
system parameters by employing again the D-decomposition method.
Later they also studied the stability of a moving bogie (Verichev and
Metrikine, 2002). Galerkin's method has also been applied to reduce the
partial differential equations of motion to a set of coupled ordinary
differential equations containing periodic coefficients that is numeri-
cally solved. This approach was followed by Yoshimura et al. (1986) for
a simply supported beam subjected to a moving oscillator including the
effects of geometric nonlinearity, by Katz et al. (1987) for a simply
supported beam subjected to a moving load whose amplitude is de-
flection dependent, and by Ding et al. (2014) in the study of the dy-
namic response of the oscillator-pavement coupled system by modelling
the pavement as a Timoshenko beam resting on a six-parameter non-
linear foundation. The Finite Element Method (FEM) was also used to
obtain the response of beams resting on elastic foundations and sub-
jected to moving oscillators. Hino et al. (1985) studied the vibration of
finite nonlinear beams subjected to a moving oscillator by using the
FEM and Newmark's implicit time integration algorithm. Lin and
Trethewey (1990) also presented a FEM formulation for the dynamic
analysis of elastic beams subjected to a one-foot and a two-foot spring-
mass-damper moving systems. A FEM approach was also employed by
Chang and Liu (1996), who analysed the vibration of a nonlinear beam
on elastic foundation subjected to an oscillator moving on a randomly
varying in space beam profile.

The problem of a moving load with harmonically varying amplitude
has also been studied by several authors; among those, noteworthy to
be mentioned are the works by Mathews (1958), Chonan (1978),
Bogacz et al. (1989), Chen et al. (2001), Chen and Huang (2003) and,

more recently, Froio et al. (2017). Some analytical and numerical so-
lutions to other types of dynamical problems that involve harmonic
loading, but not moving along the foundation, have also been proposed
in the literature (e.g. Abu-Hilal (2003), Coşkun (2003), Younesian et al.
(2012) and Saadatnia et al. (2017)).

In the present paper the finite element method is used in the study
of the transverse transient response of a simply supported Euler-
Bernoulli beam resting on a viscoelastic foundation and interacting
with a moving oscillator. The oscillator moves at constant velocity
along the longitudinal beam axis. The response of the system is studied
for three types of mechanical behaviour of the foundation: (a) linear
elastic (classical Winkler model) in Section 3, (b) nonlinear elastic (in
which the foundation reaction displays a cubic dependence on the beam
displacement) in Section 4 and (c) bilinear elastic (with different com-
pressive and tensile stiffnesses) in Section 5. The use of the finite ele-
ment method is a convenient and more practical alternative to the
analytical methods used in many of the works mentioned above. It also
shows the advantage of solving nonlinear problems for which analytical
solutions are not available. The effects of the oscillator's natural fre-
quency and velocity and of the foundation's stiffness and damping are
investigated. In particular, critical velocities of the oscillator and ranges
of velocities for which the system turns out dynamically unstable are
numerically determined for the first time in the above mentioned
nonlinear cases. Whenever possible, the obtained results are validated
by comparison with previous outcomes from the literature. The present
study may be easily extended to the case of multiple moving oscillators.

2. Finite element method formulation

Consider an Euler-Bernoulli beam finite element, of uniform height
h and length l, on a viscoelastic foundation defined between two generic
nodes i and j, as shown in Fig. 1. The vector of the (four) generalized
displacements of the finite element is

= q q q qq { }e 1 2 3 4 T (1)

and the transverse displacement field w x t( , ) in each finite element is
defined by
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A single-degree-of-freedom oscillator with mass m, stiffness k and

Fig. 1. Euler-Bernoulli beam finite element on an elastic foundation.
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