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A B S T R A C T

The aim of this work is to study the propagation of a Dugdale crack between two orthotropic half-planes. The
two mediums are of the same unidirectional composite material. The fibers are oriented symmetrically with
respect to the interface. The applied propagation criteria are deduced from the revisited Griffith theory
(Ferdjani, H. and J.-J. Marigo, European Journal of Mechanics - A/Solids, 2015. 53: p. 1–9). To resolve the
problem, the Lekhnitskii-Eshelby-Stroh representation is used (Suo, Z. Proc. R. Soc. Lond. A 427, 331–358
(1990)). The fracture threshold and the evolution of the applied load are determined for different cases of fiber
orientation and crack length. A comparison with the Griffith's model is also presented.

1. Introduction

The problem of interfacial cracks between anisotropic materials has
been studied by many authors. In his work, Gotoh (1967) discussed
some problems of bonded dissimilar anisotropic plates with cracks
along the bond. The elastic-plastic solution, with the Dugdale's as-
sumption of confined plastic deformation along the crack, is also given.
The problem of a flat crack of infinite length and constant finite width
between bonded dissimilar anisotropic materials has been examined by
Clements (1971). The stress distribution throughout the materials has
been determined when the crack is subjected to a non-uniform applied
stress. Qu and Bassani, (1989) considered the problem of an interface
crack between two anisotropic elastic solids. A necessary and sufficient
condition for the absence of oscillations in the singular crack-tip fields
has been derived. A Griffith crack lying along the interface between
anisotropic elastic solids has been analyzed by Bassani and Qu, (1989).
Explicit solutions for the displacement and stress fields have been ob-
tained when the crack-tip fields are non-oscillatory. Suo (1990), gives a
detailed collection about the mathematical approach of studying the
interfacial crack between anisotropic materials, treating oscillatory and
non-oscillatory singularity. From all these studies, only Gotoh ad-
dressed the problem of a Dugdale crack.

This paper investigates the bi-dimensional problem of the propa-
gation of a Dugdale interfacial crack between two orthotropic half-
planes. The two mediums are of the same unidirectional composite
material. The fibers are oriented symmetrically with respect to the in-
terface. The loading is such that the crack is in mode I. This particular
problem was chosen as an example of mode I crack propagation

problem in anisotropic material. There are two main differences be-
tween this work and Gotoh's paper:

• First, Gotoh used the Dugdale's assumption of a narrow plastic band
ahead of the crack tip (Dugdale, 1960). Whereas in this work, the
Dugdale's model is a particular case of the cohesive zone model or
the Barenblatt's model (Barenblatt, 1962) for brittle materials. In
other words, the Dugdale's model consists in constant cohesive
forces acting on the crack faces with no plastic yielding.

• Second, Gotoh has not studied the crack propagation problem, while
it is considered in this paper.

The propagation of a Dugdale crack has already been studied in
several works. For the mode I case, Ferdjani et al. (2007) studied a
crack in an infinite isotropic medium under uniform traction. For the
mode III case, Ferdjani and Marigo (2015) and Ferdjani (2009, 2013)
considered a crack in a semi-infinite isotropic medium, in an infinite
isotropic strip, and at the interface of a strip and a half-plane con-
stituted of different isotropic materials under uniform anti-plane
shearing respectively. For the mixed mode case, Ferdjani and Marigo
(2015) studied a crack at the interface of a strip and a half-plane con-
stituted of the same isotropic material under uniform traction.

For a crack along an interface between dissimilar anisotropic media,
the crack-tip singularity is generally of oscillatory type. For particular
types of bi-material, Qu and Bassani, (1989) have shown that the crack
tip is free of oscillation. It is shown in the following that the considered
problem is one of those special cases.

This study is performed in the framework of the revisited Griffith
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theory (Francfort and Marigo, 1998) for brittle fracture. The Dugdale's
model and the crack propagation criteria are established using an en-
ergy minimization principle with a surface energy density of Barenblatt
type (Ferdjani and Marigo, 2015). The Lekhnitskii-Eshelby-Stroh re-
presentation is used to solve the problem (Suo 1990).

The paper is organized as follows. The Dugdale's model is presented
in section 2. In section 3, the studied structure is depicted and the crack
propagation criteria presented. In section 4, the resolution method is
exposed. Section 5 is devoted to numerical results consisting in a
parametric study of the problem and a comparison with the Griffith's
model.

2. The Dugdale's model in the mode I case

For a crack in a homogeneous medium, the general cohesive zone
model has been established by Ferdjani and Marigo, 2015 in the mixed-
mode case. Following the same procedure, it can be derived for an in-
terfacial crack in the mode I case. The main characteristics of the model
are given below. Details of the method are exposed in Ferdjani and
Marigo, (2015).

Consider the plane elasticity problem of a body constituted of two
parts bonded through an interface Γ across which the displacement can
be discontinuous. The two parts are made of different materials with a
linear elastic behavior. The imposed loading causes the propagation of
a crack along the interface. Let un be the jump of the normal dis-
placement at a point of the crack path, called gap. Also, let σ be the
normal stress vector on Γ , called cohesive force.

The surface energy density φ is defined on +∞[0, [ by Ferdjani et al.
(2007):
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In equation (1), Gc is the critical energy release rate of the Griffith
theory, whereas δc is the characteristic length of the Dugdale's model.
The ratio G δ/c c has the dimension of a stress, called critical stress σc:
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The stress debonding criterion for the onset of the crack is given by:

=σ σ on Γ ,c b

where Γb is the bonded part of Γ .
In the debonded part Γd, the cohesive force σ is equal to σc as long as

≤u δn c and vanishes as soon as ≥u δn c. Therefore, Γd is divided into two
zones: the so-called cohesive zone Γc in which the cohesive forces are
equal to σc and the so-called non-cohesive zone Γ0 in which there are no
cohesive forces.

3. The studied structure and crack propagation criteria

3.1. The studied structure

Consider an infinite medium composed of two half-planes con-
stituted from the same unidirectional orthotropic composite. The fibers
of the upper (lower) half-plane make an angle of −α α( ) with the di-
rection of the interface. An initial crack = − ×D a a[ , ] {0}0 0 is on the
interface, (Fig. 1). The crack faces are submitted to constant pressure P0
increasing from zero, and the body forces are neglected. The state of
plane stress is assumed.

3.2. Crack onset and propagation

Since the critical stresses of the mediums are higher than that of the
interface, assume the crack propagates horizontally along the interface
(Γ = −∞ − × ∪ +∞ ×a a( , ] {0} [ , ) {0}0 0 ). Moreover, for reasons of

symmetry, assume the crack propagates along the axis =y 0 in a
symmetrical manner from the points ±a( , 0)0 . The debonded part Γd is
the created crack and = ±x c the position of its tips:

= − − × ∪ + + ×c a a cΓ [ , ] {0} [ , ] {0}.d 0 0

It has previously been seen (paragraph 2) that Γd can be divided into
two parts:

• The first, close to the crack tip, and named the cohesive zone, is
subjected to the constant normal cohesive forces σc.

• The second, named the non-cohesive zone, is close to the initial crack
without cohesive force.

These two zones are separated by the limit points = ±x a. Noting
that the values of c and a depend on the value of the loading P0 with
assumption ≥ ≥c a a0. At the beginning of loading, the initial condi-
tions are: = =c a a0 (Fig. 2).

In the present case, the crack growth follows two phases: the co-
hesive phase and the propagation phase. The different criteria of the
initiation and the propagation of these zones have been determined by
(Ferdjani and Marigo, 2015) for a crack in a homogeneous material.
They can be generalized to the case of an interfacial crack without any
difficulty and are presented in the following sections.

3.2.1. Cohesive crack phase < <P σ0 r0
When ≠P 00 , a crack must appear in a manner such that the

maximal normal stress on the interface remains less than the critical
value σc. When the load is sufficiently close to 0, the length of the crack
is sufficiently small so that un is everywhere smaller than the critical
value δc. Consequently, all the faces of the created crack Γd are

Fig. 1. Geometry of the structure with the initial crack.

Fig. 2. Geometry of the structure with the initial and created cracks.
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