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a b s t r a c t

This paper is concerned with a theory of thermopiezoelectricity in which the second gradient of
displacement and the second gradient of electric potential are included in the set of independent
constitutive variables. First, the basic equations of a linear theory are derived. The field equations for
homogeneous and isotropic solids are established and the boundary-initial-value problems are formu-
lated. Then, a uniqueness result for the mixed boundary-initial-value problem and a reciprocity relation
are presented. This relation forms the basis of a reciprocal theorem and a new uniqueness result. Finally,
the fundamental solutions in the stationary theory and representations of Somigliana type are derived.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

The interaction of electromagnetic fields with elastic solids has
been the subject of many investigations (see, e.g., Eringen, 2004
and the literature cited therein). Certain crystals (such as quartz,
tourmaline, etc.) when subject to stress, become electrically
polarized. This is the simple piezoelectric effect. Conversely, an
external electromagnetic field produces deformation in a piezo-
electric crystal. Wewill be concernedwith themore general case, in
which the electromagnetic field and temperature field are coupled
with the deformation field. The theory of thermopiezoelectricity
has been studied in various works (see, e.g., Mindlin, 1961;
Nowacki, 1986; Eringen and Maugin, 1990).

The second gradient electroelasticity has received in recent
years a widespread attention. The origin of the theories of non-
simple elastic solids goes back to works of Toupin (1962, 1964),
Mindlin (1964), and Mindlin and Eshel (1968). The interest in the
gradient theory of elasticity is stimulated by the fact that this
theory is adequate to investigate important problems related to size
effects and nanotechnology (Askes and Aifantis, 2011). The strain
gradient theory and Cosserat theory have been used to study the
behaviour of chiral materials (Papanicolopulos, 2011; Ha et al.,
2016). The gradient theories of thermomechanics have been

studied in various papers (Ahmadi and Firoozbakhsh, 1975; Ieşan
and Quintanilla, 1992; Forest et al., 2000, 2002; Ieşan, 2004;
Forest and Amestoy, 2008; Forest and Aifantis, 2010; Fernandez-
Sare et al., 2010). Forest and Aifantis (2010) have introduced
higher order gradients of temperature and concentration to
investigate the transport theories. For dielectrics, the polarization
gradient theory (Mindlin, 1968) and the electric field gradient
theory (Landau and Lifshitz, 1984) are considered as theories for
weak nonlocal effects (Maugin, 1979). The electric field gradient
theory has been investigated in various papers (Kafadar, 1971;
Maugin, 1980; Eringen and Maugin, 1990). Kalpakides and
Agiasofitou (2002) have established a theory of electroelasticity
including both strain gradient and electric field gradient. Hu and
Shen (2009) derived a gradient theory with surface effects for
nanosized dielectrics with strain and electric field gradients. A
theory of piezoelectricity with rotation gradient effects has been
investigated by Wang et al. (2004). Electric field gradient effects
have been studied in various papers (see, e.g., Wang et al., 2008;
Yang et al., 2006; Yue et al., 2015; Mohammadimehr et al., 2016;
Sladek et al., 2017).

In this paperwe present a linear theory of thermopiezoelectricity
in which the second gradient of displacement and the second
gradient of electric potential are included in the set of independent
constitutive variables. We have used the equations established by
Toupin (1964), Kalpakides and Agiasofitou (2002) and Eringen
(2004) to derive the local forms of energy balance and entropy
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production inequality. The restrictions placed on constitutive
equations by the second law have been derived following the results
presented by Eringen (2004). First, we derive the basic equations of
the theory by using the Clausius-Duhem inequality. The field
equations for homogeneous and isotropic solids are established and
the boundary-initial-value problems are formulated. Then, we
establish a uniqueness result for the mixed boundary-initial-value
problem. We derive a reciprocity relation which involves two pro-
cesses at different instants. This relation forms the basis of a recip-
rocal theorem and a new uniqueness result. The proof of the
reciprocal theorem avoids both the use of Laplace transform and the
incorporation of the initial conditions in the equations of motion.
The new uniqueness result is established without using the defi-
niteness assumptions on the elastic constitutive coefficients. Finally,
we establish the fundamental solutions in the stationary theory and
derive representations of Somigliana type.

2. Second gradient thermopiezoelectricity

In this section we present the basic equations of a second
gradient theory of thermopiezoelectricity. Let us consider a body
which at time t0 occupies the bounded region vB of Euclidean three-
dimensional space, with Lipschitz boundary vB consisting of a finite
number of smooth surfaces. Let Gp be the intersection of two
adjoined smooth surfaces and C ¼ ∪Gp. We assume that B is occu-
pied by a homogeneous solid. Let u be the displacement vector field.
We refer the deformation of the body to a fixed system of rectan-
gular Cartesian axes Oxk, ðk ¼ 1;2;3Þ. We shall employ the usual
summation and differentiation conventions: Latin subscripts (unless
otherwise specified) are understood to range over the integers
ð1;2;3Þ whereas Greek subscripts are confined to the range ð1;2Þ,
summation over repeated subscripts is implied and subscripts pre-
ceded by a comma denote partial differentiation with respect to the
corresponding Cartesian coordinate. A superposed dot denotes the
material derivative with respect to the time t. We assume that the
body is free from initial stresses. The local form of the conservation
law of linear momentum may be written in the form

tji;j þ rfi ¼ r€ui; (1)

where tij is the stress tensor, fi is the external body force per unit
mass, and r is the mass density in the reference configuration.

Let g be the density of free charge,D the electric displacementfield,
and E the electric intensity. Then, Maxwell's equations for the quasi-
static electric fields can be written as (Eringen and Maugin, 1990)

Dj;j ¼ g; Ek ¼ �4;k; (2)

where 4 is the electric potential. The components of surface traction
and the classical surface charge density are given respectively by

ti ¼ tjinj; G ¼ �Djnj: (3)

Let u be an arbitrary material volume in the continuum, boun-
ded by a surface vu at time t. We suppose that U is the corre-
sponding region in the reference configuration B, bounded by a
surface vU. Following Toupin (1964), Kalpakides and Agiasofitou
(2002), Wang et al. (2004) and Eringen (2004), we postulate an
energy balance in the formZ
U

rð _eþ vi _viÞdv ¼
Z
U

½rðfivi þ SÞ þ 4 _g�dv

þ
Z
vU

�
tivi þmjivi;j þ qþ 4 _Gþ Ei _Qi

�
da;

(4)

for all regions U of B and every time, where e is the internal energy
per unit mass, vi are the components of the velocity vector, S is the
heat supply per unit mass, q is the heat flux across the surface vu

measured per unit undeformed area, mji is the hypertraction
associated with the surface vumeasured per unit area of vU, and Qi
is the generalized surface charge density. If we use the relations
(1)e(3) and the divergence theorem, then (4) reduces toZ
U

r _edv ¼
Z
U

�
rSþ tjivi;j � 4;i

_Di

�
dv

þ
Z
vU

�
mjivi;j þ q� 4;j

_Qj

�
dv;

(5)

for all regions U and every time. With an argument similar to that
used to obtain (3)1, from (5) we get�
mji � mkjink

�
vi;j þ q� qini �

�
_Qi � _Qjinj

�
4;i ¼ 0; (6)

where mkji is the double stress tensor (Toupin, 1964), qj is the heat
flux vector, and Qji is the electric quadrupole.

If we use (6) and the divergence theorem, then from (5) we
obtain the following local form of energy balance

r _e ¼ tjivi;j þ mkjivi;jk þ rSþ qj;j � 4;i _si � 4;ij
_Qji; (7)

where

tji ¼ tji þ mkji;k; si ¼ Di þ Qji;j: (8)

We note that the equation (1) can be written in the form

tji;j � mkji;kj þ rfi ¼ r€ui: (9)

The equation (2)1 becomes

sj;j � Qij;ij ¼ g: (10)

Let us consider a motion of the body which differs from the
given motion by a superposed uniform rigid body angular velocity,
and assume that r; e; tij;mkij; Ei;Di;Qij and qi are not affected by such
motion (Green and Rivlin, 1964). Then, from (7) we obtain

tij ¼ tji: (11)

It is known that the skew symmetric part m½ij�k makes no contri-
bution to the rate of work over any closed surface in the body. We
shall assume that mijk is symmetric with respect to i and j. In view of
(11) the relation (7) can be written as

r _e ¼ tij _eij þ mkji _kkji þ rSþ qj;j � 4;i _si � 4;ij
_Qji; (12)

where

eij ¼
1
2
�
ui;j þ uj;i

�
; kijk ¼ uk;ij: (13)

We postulate the entropy production inequality in the formZ
U

r _hdv�
Z
U

1
T
rSdv�

Z
vU

1
T
qda � 0; (14)

for every part U of B and every time. Here h is the entropy per unit
mass, and T is the absolute temperature which is assumed to be
positive. Following Green and Steel (1966), from (14) we obtain
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