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a b s t r a c t

Coalescence of voids by internal necking is in most cases the last microscopic event related to ductile
fracture and corresponds to a localized plastic flow between adjacent voids. Macroscopic load associated
to the onset of coalescence is classically estimated based on limit analysis. However, a rigorous upper-
bound mathematical expression for the limit-load required for flat voids coalescence that remains
finite for penny-shaped voids/cracks is still unavailable. Therefore, based on limit analysis, theoretical
upper-bound estimates - both integral expression and closed-form formula - are obtained for the limit-
load of cylindrical flat voids in cylindrical unit-cell subjected to boundary conditions allowing the
assessment of coalescence, for axisymmetric stress state. These estimates, leading to finite limit-loads for
penny-shaped cracks, are shown to be in very good agreement with numerical limit analysis, for both
cylindrical and spheroidal voids. Approximate formula is also given for coalescence under combined
tension and shear loading. These coalescence criteria can thus be used to predict onset of coalescence of
voids by internal necking in ductile fracture modelling.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Macroscopic ductile fracture of metallic materials has been
shown to be related to three different microscopic phenomena,
namely void initiation, growth and coalescence (Puttick, 1959). In
most cases, debonding or cracking of second-phase particles lead to
the creation of voids (Argon et al., 1975; Beremin, 1981; Babout
et al., 2004), that grow under mechanical loading (Rice and
Tracey, 1969; McClintock, 1968; Marini et al., 1985; Weck and
Wilkinson, 2008) until localization appears between adjacent
voids leading to void coalescence (Brown and Embury, 1973;
Thomason, 1968; Cox and Low, 1974; Weck et al., 2008). Homoge-
neized macroscopic models of porous materials have been devel-
oped since the work of Gurson (Gurson, 1977) based on limit
analysis and Rousselier (Rousselier, 1981) based on thermody-
namical concepts, and more recently based on non-linear varia-
tional principles (Danas and Ponte Casta~neda, 2009). Models have
been extended to account for void nucleation (Chu and Needleman,
1980), void shape effects (Gologanu et al., 1997; Madou and
Leblond, 2012a), plastic anisotropy effects (with or without void
effects) (Benzerga and Besson, 2001; Keralavarma and Benzerga,
2010; Monchiet et al., 2008; Morin et al., 2015a) and more

recently to single crystals (Han et al., 2013; Paux et al., 2015;
Mbiakop et al., 2015). Both microscopic and homogeneized
macroscopic models have been assessed through comparisons to
computational cell models (see, e.g., (Koplik and Needleman, 1988;
Tvergaard, 1990)). Homogeneized models attempt to account for
void coalescence, either by considering an empirical acceleration of
porosity after a critical value (Tvergaard and Needleman, 1984) or
by coupling directly growth model to coalescence model, the latter
giving a flow potential after the onset of coalescence (Benzerga
et al., 2002). The last method appears to be the most promising
as no empirical parameters identification is necessary, but requires
accurate void coalescence model which is the main purpose of the
present work andwill be detailed hereafter. The interested reader is
referred to the reviews of Benzerga and Leblond (Benzerga and
Leblond, 2010), Besson (Besson, 2010) and Pineau et al. (Pineau
et al., 2016) for detailed presentations about ductile fracture.

Experimental observations of void coalescence have distin-
guished three main mechanisms: internal necking where localized
plastic flow appears in the intervoid ligament perpendicular to the
main loading direction similar to necking observed in tensile test,
void sheeting involving shear band (Cox and Low, 1974), and neck-
lace coalescence where localized plastic flow appears in the inter-
void ligament parallel to the main loading direction (Benzerga
et al., 2004). In this study, we focus on void coalescence by inter-
nal necking, also refers to as coalescence in layers, which is the
most common situation. Thomason (Thomason,1968,1985a,1985b,
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1990) proposed to assess the onset of coalescence through reaching
plastic limit-load in the intervoid ligament, considering a perfectly
plastic material and making use of both limit analysis and homo-
geneization technique. The analysis gives the macroscopic stress at
which onset of coalescence - which can be seen as a transition from
diffuse plastic flow around the void to localized flow in the inter-
void ligament with associated elastic unloading in other regions - is
expected to occur. Such kinematics have been supported by unit-
cell simulations (Koplik and Needleman, 1988). Thomason model
have been shown to give quite accurate predictions compared to
experimental results (see for example (Weck et al., 2008)), and have
been extended to account for strain hardening (Pardoen and
Hutchinson, 2000; Scheyvaerts et al., 2011) and secondary voids
(Fabr�egue and Pardoen, 2008).

The original Thomason model (Thomason, 1990) - and exten-
sions based on it - suffers from twomain drawbacks. The first one is
that it gives infinite coalescence load in the limit of very flat voids,
i.e. penny-shaped cracks. Thus, predictions worsen as the void
flatness increases. This prevents for example the use of Thomason
model in low stress triaxiality conditions, where initially spherical
voids tend to form micro-cracks (Tvergaard, 2012). Moreover,
although limited experimental results are yet available in literature,
evidence of void coalescence of flat voids has been reported for
aluminum alloys through Synchrotron Radiation Computed To-
mography (SRCT) (Shen et al., 2013). Voids initiate from elongated
particles, and remain flat up to coalescence even though plastic
deformation occurs because of the small distance between them.
Example of flat void coalescence is shown in Fig. 1 on a model
experiment. Aluminum alloys are used as structural materials in
industrial applications, thus precise estimation of flat void coales-
cence is needed. The second drawback is that, while the upper-
bound theorem of limit analysis was used, Thomason relies at the
end on an empirical equation that may not be strictly an upper-
bound. Recently, rigorous theoretical upper-bound estimates
were obtained by considering cylindrical voids in cylindrical unit-
cell (Benzerga and Leblond, 2014; Morin et al., 2015b). To account
for finite limit-load of penny-shaped cracks, empirical modification
of Thomason model has been proposed in (Benzerga, 2002), while
heuristic modifications of rigorousmodels have beenmore recently
proposed (Torki et al., 2015; Keralavarma and Chockalingam, 2016).
However, to the knowledge of the authors, no mathematical
expression is available that provides a rigorous upper-bound esti-
mate of the limit-load that remains finite for penny-shaped cracks.
Therefore, the aim of this paper is to provide rigorous upper-bound
estimates of the limit-load for coalescence of flat voids by internal
necking that leads to finite limit-load for penny-shaped cracks, in
the case of axisymmetric loading conditions.

In the first part of the paper, cylindrical unit-cell with cylindrical
and spheroidal void is described as well as the boundary conditions
considered for the study of coalescence. Theoretical results of limit

analysis for a von Mises matrix and numerical limit analysis are
briefly summarized. In a second part, upper-bound estimates - both
integral expression and closed-form formula - for the coalescence
limit-load of cylindrical unit-cell containing flat cylindrical void
under axisymmetric loading conditions are detailed and compared
to supposedly exact numerical results. The estimates are finally
compared to numerical results for flat spheroidal voids, and to the
predictions of coalescence models with heuristic modifications to
account for finite limit-load for penny-shaped cracks (Benzerga,
2002; Torki et al., 2015; Keralavarma and Chockalingam, 2016). In
addition, approximate void coalescence criterion for combined
tension and shear is proposed based on the coalescence limit-load
obtained under axisymmetric loading conditions.

2. Limit analysis of cylindrical unit-cell with voids

2.1. Geometry and boundary conditions

A cylindrical unit-cell U of half-height H and radius L containing
a coaxial void u is used in this study (Fig. 2). Two geometries of
voids are considered, namely cylindrical (of radius R and half-
height h) and spheroidal (of semi-principal length R and h). Two
dimensionless ratio will be used in the following:

W ¼ h
R

c ¼ R
L

(1)

where W is the aspect ratio of the void, and c the dimensionless
length of the inter-void ligament. As only coalescence is studied
here, i.e. localized plastic flow in the inter-void ligament, the height
H is not a parameter of interest (Morin et al., 2015b). The cylindrical
unit-cell subjected to the following boundary conditions for the
velocity field:

vrðL; zÞ ¼ D11L
vzðr;±HÞ ¼ ±D33H

(2)

stands as an approximation of a unit-cell of a periodic array of voids
of hexagonal lattice1 (Fig. 1) under periodic boundary conditions
(Koplik and Needleman, 1988) in axisymmetric stress state
(S33 >S11 ¼ S22, Sij ¼ 0 for isj).

The material is supposed to be rigid-perfectly plastic,2 obeying
von Mises’ criterion, and plastic flow is associated by normality. At
coalescence, the regions above and below the void unload elasti-
cally (Koplik and Needleman, 1988), which thus corresponds in our

Fig. 1. Experimental observation of flat void coalescence by internal necking. Elliptic cylindrical holes have been drilled through 75mm stainless steel sheet and subjected to uniaxial
tension. Black arrow indicates the loading direction.

1 The reader is referred to (Kuna and Sun, 1996) for a discussion about the effect
of the choice of the unit-cell.

2 As a classical result of limit analysis that will be used in this study is that elastic
strain rates vanish at limit-load.
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