
Free vibration of an isotropic elastic skewed parallelepiped e A closed
form study

Eli Hanukah, Sefi Givli*

Faculty of Mechanical Engineering, Technion e Israel Institute of Technology, Haifa 32000, Israel

a r t i c l e i n f o

Article history:
Received 12 November 2014
Accepted 1 April 2015
Available online 17 April 2015

Keywords:
Free vibration
Parallelepiped
Closed form formulation

a b s t r a c t

The free-vibration of three-dimensional non-rectangular parallelepiped is studied, aiming at providing
closed form expressions for the natural frequencies by means of a systematic approximation. To this end,
a kinematic approximation is formulated based on Taylor's multivariable expansion, and constitutive
relations for internal forces follow from analytical integration of the weak form. Based on this approach
we investigate three general classes of parallelepipeds, namely a cube, a rectangular brick, and a skewed
rhombohedron. Our second order closed form solution for the cube significantly improves currently
available analytical approximations derived by Cosserat point theory. The improvement is not only in
accuracy, but also in the ability to provide a richer response spectrum and to capture the lowest fre-
quencies. In addition, based on a fourth order approximation, we derive a simple explicit expression for
the fundamental (lowest) frequency covering the entire range of Poisson's ratios with high accuracy e

less than 1.6% error compared to FE results. In addition, we obtain, for the first time, closed form ex-
pressions, based on a second order approximation, for the fundamental frequencies of rectangular bricks
and of skewed rhombohedra. These solutions cover the entire range of aspect ratios, from thin plates
through a cube to slender beams, and the entire range of skew angles.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

The parallelepiped is a fundamental structural building block in
a wide range of engineering applications and constructions,
ranging from long-span highway bridges to structural slabs, decks
and panels. In addition, beams and plates, which are most abun-
dant in structures, are a special case of the 3-D parallelepiped. Thus,
3-D analysis of parallelepipeds can be useful to define the range of
applicability of simpler theories. Indeed, many approximate solu-
tions were formulated for particular (simple) parallelepipeds. For
example, if one of the dimensions of the parallelepiped is small
relative to the other two then it degenerates to a thin plate, whereas
if two of its dimensions are small relative to the third then it de-
generates to a thin beam. The free vibrations of one dimensional
beams (Hutchinson, 2001; Kaza and Kielb, 1984; Love, 2013; Rao
and Carnegie, 1973; Strutt et al., 1945; Subrahmanyam and Kaza,
1985; Timoshenko, 1921) and of 2-D plates (Dokainish and
Rawtani, 1969; Gill and Ucmaklioglu, 1979; Leissa et al., 1981;

McGee and Giaimo, 1992; Olson and Lindberg, 1971; Petricone
and Sisto, 1971; Walker, 1978) have been studied extensively. The
problem of a vibrating 3-D parallelepiped, either rectangular or not,
is much more difficult.

In the last several decades there has been an effort to provide
3-D elasticity solutions for the free vibration of prisms and par-
allelepipeds. Vast majority of these works have utilized various
techniques to obtain numerical results. For example, a series
expansion method was applied to analyze the 3-D vibration of a
free rectangular parallelepiped in (Fromme and Leissa, 1970;
Hutchinson and Zillmer, 1983). Later (Leissa and Zhang, 1983;
Liew et al., 1995a), have used generalized orthogonal poly-
nomials as trial functions for the same problem. In (Lim, 1999), the
vibration of a rectangular parallelepiped was studied by neglecting
transverse normal stresses. The study in (Zhou and McGee III,
2013) offers a comprehensive numerical study of 3-D vibration
solutions for elastic skew prisms. Simple algebraic polynomials,
algebraic-trigonometric polynomials, and Gram-Schmidt orthog-
onal polynomials have also been used in (Fromme and Leissa,
1970; Hutchinson, 1981; Hutchinson and Zillmer, 1983; Leissa
et al., 1981; Leissa and Zhang, 1983; Liew and Hung, 1995; Liew
et al., 1994, 1993, 1995a,b; Lim, 1999; McGee III and Kim, 2010;
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McGee and Giaimo, 1992; So and Leissa, 1997). Vibration of non-
rectangular thick plates was considered in (McGee et al., 1999).
These days, the natural frequencies of a parallelepiped can be
calculated with standard commercial finite-element software.
However, these solutions neither provide closed form expressions
nor analytical insights. The main purpose of the current contri-
bution is to provide closed form expressions by means of a sys-
tematic approximation. These solutions cover the entire range of
practical parameters, and their strength rests in their ability to
provide quantitative intuition that is applicable for a wide range of
structural elements. The approach presented here can also be
applied to other 3-D geometries, emphasizing its practical
importance.

Only a few studies applied structural theories that provide
closed form solutions/approximations for 3-D elasticity problems.
These models take advantage of particular constitutive relations,
justified by simplifying assumptions on the structural behavior,
that lead to closed form equations of motion in terms of the degrees
of freedom and also material and geometrical constants. The
structural approaches which can be applied to 3-D problems are
roughly divided to two main classes: Pseudo Rigid Body and Cos-
serat Point (e.g. Antman, 2005; Casey, 2006; Naghdi, 1972; Rubin,
1987; Rubin et al., 2002). Cosserat Point method defines kine-
matic approximations in terms of directors, and also imposes re-
strictions on the strain energy function. In particular, the strain
energy is separated into two parts; one uses average measures of
deformation and the other is restricted to admit exact solutions,
such as simple torsion and pure bending, in an average sense.
Cosserat point analytically satisfies Patch test, which ensures
convergence when the structure dimensions (size) tend to zero, see
for example (Jabareen et al., 2012; Jabareen and Rubin, 2010b,
2008b, 2010c). Pseudo-Rigid body is a Cosserat-like approach that
enables closed form model for 3-D elastic solids of finite size. In
addition to rigid body motion, it allows homogeneous deformation.
Papadopoulos (Papadopoulos, 2001) has developed a second order
theory of a pseudo-rigid body which has 30 degrees of freedom. It
seems that the establishment of a pseudo-rigid body model on the
basis of continuum mechanics is a delicate and unresolved issue
(see Casey, 2006; Cohen and Muncaster, 1984; Steigmann, 2006).
The pseudo-rigid body method is mainly used to simulate dy-
namics of multi-body systems which involve deformable solids
with boundary interactions, such as contact (Cohen and
Macsithigh, 1991; Cohen and Sun, 1988; Kanso and Papadopoulos,
2004; Muncaster, 1984; Slawianowski, 1982; Solberg and
Papadopoulos, 1999, 2000; Zienkiewicz and Taylor, 2005).

The present study follows the basic guidelines of (Hanukah and
Goldshtein, 2012) to formulate the governing equations of motion
for a 3-D non-rectangular parallelepiped. In particular, the 3-D
elasticity problem is converted into a set of closed form non-
linear ODEs. Kinematic approximation is systematically derived
bymeans of Taylor's multivariable expansion. Constitutive relations
for internal forces follow from analytical integration of the weak
form. The following analytical integration leads to closed-form
expressions for internal forces and the stiffness matrix. Analytic
linearization of the system enables us to derive simple closed form
expressions for resonant frequencies in terms of geometric and
material constants.

We note that the weak formulation we adopt is closely related
to the finite element method (FEM) (Wriggers, 2008), and in
particular to a p-type FEM with polynomial shape functions
(Yosibash, 2012). However, while FEM expresses the kinematic
approximation in terms of nodes, herein the kinematic approxi-
mation is rigorously expressed in terms of internal degrees of
freedom which are consistent with a systematic approximation.
We also note that closed form expressions for the internal forces

and stiffness matrix have been previously derived based on FEM for
linear elastic problems (e.g. Lee and Hobbs, 1998; McCaslin et al.,
2012; Shiakolas et al., 1994, 1992). These were developed in or-
der to reduce the numerical effort required by FEM. In the present
study, we use exact analytical integration in order to write an
explicit formulation of the governing equations and to obtain
analytical solutions.

We use our approach to study three classes of parallelepipeds: a
cube, a rectangular brick, and a skewed rhombohedron. Currently,
the only study that provides closed form expressions for the natural
frequencies of a cube is (Rubin, 1986), which builds on a simple
Cosserat point theory (Rubin, 1985). This formulation involves
twelve degrees of freedom which can provide six non-trivial nat-
ural frequencies (excluding rigid body motion). Unfortunately,
these frequencies are not necessarily the fundamental ones, and
lower frequencies may exist. This Cosserat point theory has been
generalized later to include 24 degrees of freedom (Jabareen and
Rubin, 2008a, 2010a; Nadler and Rubin, 2003a, 2003b) in order to
account for inhomogeneous deformations and to be implemented
into finite elements. However, this theory was not applied to the
free vibration problem, and cannot be systematically generalized to
formulate a higher order theory (higher than second order). We
find that our first order solution is identical to the one obtained in
(Rubin, 1986), which only provides 6 nontrivial modes that are
associated with only two frequencies. Our second order approxi-
mation significantly improves the accuracy of the solution. Further,
it predicts 24 non-trivial modes with nine different frequencies.
This is a significant improvement over the first order solution in
terms of describing the response spectrum of the structure.
Moreover, the solution obtained in (Rubin, 1986) is not able to
capture the lowest frequencies. We also find that different modes
may be of greater engineering importance, i.e. be associated with
lower frequencies, depending on Poisson's ratio. This stems from
the fact that frequencies associated with different modes have a
different functional dependence on Poisson's ratio. Finally, we
provide a highly accurate simple analytical expression for the
fundamental (lowest) frequency based on a fourth order approxi-
mation. Next, we apply our approach to derive, for the first time, a
closed form expression for the fundamental frequency of a rect-
angular brick of dimensions H � H � εH based on a second order
approximation. Our solution provides reasonable accuracy while
covering the entire range of Poisson's ratios and the entire range of
ε, i.e thin plates (ε ≪ 1), thick plates (ε < 1), cubes (ε ¼ 1), short
beams (ε > 1), and slender beams (ε [ 1). Finally, we derive a
closed form expression for the fundamental frequency of a skewed
parallelepiped (rhombohedron with angle f). The solution is based
on a second order approximation and covers the entire range of
Poisson's ratios and skew angles, f.

The outline of the paper is as follows. Section 2 presents the
main theoretical considerations and formulation of the free vibra-
tion problem. In Section 3, we apply the formulation from Section 2
to study the free vibrations of three classes of parallelepipeds: a
cube, a rectangular brick, and a skewed rhombohedron. The accu-
racy of our closed-form expressions for the natural frequencies is
examined by a comparison with finite-element simulations. Sum-
mary and main conclusions are presented in Section 4.

2. Theoretical considerations

Consider a three dimensional body occupying a finite volume in
Euclidean space, which has a parallelepiped shape in its reference
configuration, made of an isotropic and linear-elastic material, free
of gravitational body forces or tractions (see Fig. 1). First, the basic
equations of linear elasticity are recalled. Balance of linear and
angular momentum in absence of body forces
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