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a b s t r a c t

The axisymmetric problem of small-scale frictionless indentation of an elastic hemispherical in-
homogeneity embedded at the free surface of a semi-infinite elastic matrix is considered. It is assumed
that the radius of contact area is relatively small compared with the radius of the inhomogeneity. The
first-order asymptotic model for the incremental indentation stiffness is presented in terms of the co-
efficient of local compliance, which is evaluated based on the analytical solution for the surface Green's
function. The influence of both Poisson's ratios on the corresponding indentation scaling factor, which
reflects the effect of localized inhomogeneity, is studied in detail.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Indentation technique (Hardy et al., 1971; Follansbee and
Sinclair, 1984; Hill et al., 1989) has been proved very useful in
testing mechanical properties of small material samples and, in
particular, thin films (Antunes et al., 2007; Hemmouche et al.,
2013). By modeling the sample configuration as an elastic layer
bonded to a rigid base or to an elastic substrate, one can study the
corresponding thickness effect (Hayes et al., 1972; Argatov et al.,
2013) or the substrate effect (Yu et al., 1990; Gao et al., 1992;
Chen and Vlassak, 2001; Perriot and Barthel, 2004; Argatov and
Sabina, 2014).

In recent years, the AFM indentation tests have been applied for
characterizing composite materials (Gregory and Spearing, 2005;
Constantinides et al., 2006), for which new identification
methods should be developed in order to take into account the
effect of material inhomogeneity (Kabele et al., 2008).

In particular, an important sample geometry is represented by a
hemispherical inhomogeneity embedded at the free surface of an
elastic half-space made of another material (Fig. 1a). Axially-
symmetric finite-element solutions of the indentation problems
for an elastic hemispherical inhomogeneity were obtained by Batog
et al. (2008) and Kabele et al. (2008) under simplifying assumptions

that the values of Poisson's ratio is assumed to be the same in the
hemispherical inhomogeneity and the semi-infinite matrix.

In the present paper, we develop the first-order asymptotic
model for the incremental indentation stiffness, which in the
axisymmetric case can be written as follows (Argatov, 2010;
Argatov and Sabina, 2014):
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p

: (1)

Here, P is the contact force, w is the indenter displacement,
ε ¼ a/l is a small parameter, a is the radius of contact area, l is the
radius of inhomogeneity, Eeff is the effective elastic modulus
defined through the formula

1
Eeff

¼ 1� n

2G
þ 1� n20

E0
: (2)

Recall that the effective modulus Eeff is used to account for the
effect of elastic deformation of the indenter, whose Young's
modulus and Poisson's ratio are denoted by E0 and n0, respectively.

Formula (1) contains the so-called (Argatov, 2002) coefficient of
local compliance a0, which bears information about the in-
homogeneity geometry, the interface conditions between the in-
homogeneity andmatrix, and depends on Poisson's ratios n and n as
well as on the inhomogeneity-matrix shear moduli ratio G ¼ G=G.
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2. The hemispherical inhomogeneity subjected to a
concentrated force

In this section, we briefly outline the analytical solution ob-
tained by Tsuchida et al. (1990) for the three-dimensional mixed
boundary value problem of a hemispherical inhomogeneity, u,
embedded at the free surface of an elastic half-space,
ℝ3þ ¼ fx ¼ ðx1; x2; x3Þ : x3 >0g, and subjected to a concentrated
force, P. By the way, we correct misprints and shortcomings in the
mentioned study.

We assume that the inhomogeneity u is perfectly bonded to the
semi-infinitemedium, and the continuity and equilibriumconditions
along the interface g ¼ vu∩ℝ3þ are formulated as follows:

uðxÞ ¼ uðxÞ; sðnÞðxÞ ¼ sðnÞðxÞ; x2g: (3)

Here, u and sðnÞ, u and sðnÞ are the displacement and stress
vectors in the inhomogeneity u and in the matrix ℝ3þnu,
respectively.

Let us denote the systems of cylindrical and spherical coordinates
by (r,q,z) and (R,q,f) respectively (see Fig. 1). Then, in the spherical
coordinates, the boundary conditions (3) can be rewritten as

ðuRÞR¼l ¼ ðuRÞR¼l;
�
uf
�
R¼l ¼

�
uf
�
R¼l; (4)

ðsRÞR¼l ¼ ðsRÞR¼l;
�
tRf
�
R¼l ¼

�
tRf
�
R¼l: (5)

Note that in the axisymmetric case, uq ¼ uq ¼ 0 and
tRq ¼ tRq ¼ 0.

2.1. Green's function and asymptotic coefficients of local compliance

At the coordinate center, O, the vector-function u should satisfy
the following asymptotic condition:

uðxÞ ¼ PTðxÞ þ Oð1Þ; x/O: (6)

Here, T is the solution of the Boussinesq problem for an elastic
half-space comprised of the same material properties as the
inhomogeneity.

In the case of a unit force P, the solution to the elastic problem
(3), (6) represents Green's vector-function with a pole at the point
O. The structure of the next terms in the asymptotic expansion (6)
was studied in detail by Argatov (2002). It was shown that in
asymptotic analysis of frictionless contact problems, the following
asymptotic expansion plays an important role:

2pG
ð1� nÞP u3ðx1; x2;0Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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X∞
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an
l2n
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�n
: (7)

Here, G and n are the shear modulus and Poisson's ratio of the
inhomogeneity, l is the radius of the inhomogeneity. The asymp-
totic constants a0,a1,… are called the coefficients of local compli-
ance (Argatov, 2002). We emphasize that the local-compliance
coefficients are dimensionless and depend on the inhomogeneity-
matrix shear moduli ratio

G ¼ G
G

(8)

as well as on Poisson's ratios n and n, where G and n are the shear
modulus and Poisson's ratio of the semi-infinite matrix.

2.2. Boussinesq potentials

In the case of axisymmetry about the x3-axis, the general solu-
tion to the elasticity equations in the matrix is given by the Bous-
sinesq potentials
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þ m

�
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�
; uq ¼ 0;
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�
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�
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(9)

where F0 and F3 are harmonic functions, i. e., V2F0 ¼ V2F3 ¼ 0,

V2 ¼ 1
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�
; m ¼ cosf:

The corresponding stress field is given by1

The solution T of the Boussinesq problem is expressed in terms
of the Boussinesq potentials as

F
0
0 ¼ �p0l2

2
ð1� 2nÞlnðRþ x3Þ; F

0
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2
1
R
; (11)

where p0 is the equivalent pressure given by

p0 ¼ P
pl2

; (12)

and the quantities denoted by a bar refer to the inhomogeneity.
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tfq ¼ tRq ¼ 0:

(10)

1 Formulas (10) coincide with the corresponding relations used by Tsuchida et al.
(1990) except for the formula for sf.
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