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a b s t r a c t

Rolling processes for which the characteristic length scale reaches into the range where size effects
become important are receiving increased interest. In particularly, this is owed to the roll-molding
process under development for high-throughput of micron-scale surface features. The study presented
revolves around the rolling induced effect of visco-plasticity (ranging hot and cold rolling) in combi-
nation with strain gradient hardening e including both dissipative and energetic contributions. To bring
out first order effects on rolling at small scale, the modeling efforts are limited to flat sheet rolling, where
a non-homogeneous material deformation takes place between the rollers. Large strain gradients
develop where the rollers first come in contact with the sheet, and a higher order plasticity model is
employed to illustrate their influence at small scales. The study reveals that the energetic length
parameter has negligible effect on the rolling quantities of interest, while the contribution coming from
the dissipative length parameter can be dominant. Considering a slow and a fast moving sheet,
respectively, convergence towards the rate independent limit is demonstrated, and a characteristic ve-
locity is identified, for which the torque and punch force applied to the roller becomes independent of
the material rate-sensitivity.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Rolling at small scale has recently received attention due to an
apparent size effects observed when down-scaling experiments.
One suspect to this is strain gradient hardening. It is well-
established that with large plastic strain gradients come an
increased hardening at micron scale e and rolling is no exception.
As the sheet is forced between the rollers, a fairly heterogeneous
evolution of plastic straining takes place and severe gradients
develop (Richelsen, 1993, 1996). To accommodate the large plastic
gradients, Geometrically Necessary Dislocations (GNDs) are forced
to develop, and with the movement and storage of these additional
dislocations come added free energy and dissipation (Ashby, 1970;
Gurtin, 2002; Ohno and Okumara, 2007). At micron scale, GNDs can
become a substantial portion of the total dislocation density, and
thus dominate the amount of energy required to deform the
material.

Nielsen et al. (2015) recently demonstrated rolling related size
effects in the rate-independent limit of an elastic-viscoplastic solid
(cold rolling), employing a steady-state numerical framework. By

accounting for a dissipative length scale, it has been shown that the
forces (punch force, roll torque, power input etc.), and hence the
contact interface conditions, between the rollers and the sheet,
generally displays increased levels. As discussed by Richelsen
(1991), modeling the rolling process in a traditional Lagrangian
finite element framework is by no means trivial. E.g. numerical
issues arise when taking into account the continuously changing
contact interface as the region moves relative to the discretized
domain when the material passes between the rollers. In addition,
complexity is added by the frictional stresses changing direction
within a narrow sticking region for which the size and position is
unknown in advance. All of these numerical issues are avoided in a
steady-state framework by letting the discretized domain remain
stationary relative to the rollers, while the sheet material passes
through the domain. Thus, the contact interface, sticking region,
and stress/strain fields become stationary to an observer at the
rollers. This is all about relative motion, but the stationarity makes
the numerical task easier to tackle.

Numerous numerical investigations of the rolling process have
been undertaken and count both 1D, 2D and 3D studies
(Montmitonnet, 2006). A large portion of these accepts rigid-
plasticity or visco-plasticity as an approximation (Zienkiewicz
et al., 1978; Mori et al., 1982; Cavaliere et al., 2001), and residual
stresses and the associate material behaviour are typically
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neglected. Sheet rolling often takes place at elevated temperatures
(hot rolling), ranking material sensitivity essential, but the impor-
tance of elastic unloading is recognized for rolling at room tem-
perature (cold rolling). The steady-state formulation put forward by
Dean and Hutchinson (1980) is well suitable for history dependent
material deformation processes and it readily accounts for elastic
unloading. Their method has been adapted to rolling in the study by
Nielsen et al. (2015), and it will be further exploited in the present
investigation. The objective of the present study is to gain insight
into, and quantify, the combined effect of strain rate-sensitivity and
strain gradient hardening during flat sheet rolling; essentially
studying rate effects as the characteristic length scale reaches into
the range where size effects become important. Both dissipative
and energetic contributions are included.

The paper is structured as follows. The material model and
steady-state formulation are presented in Section 2, while the
considered boundary value problem is outlined in Section 3. Results
are laid out in Section 4 and discussed with focus on the combined
effect of strain rate-sensitivity and strain gradient hardening. Some
concluding remarks are given in Section 5.

2. Model: constitutive relations and steady-state formulation

2.1. Rate-sensitive constitutive material model

The flat rolling problem is analyzed using the gradient enhanced
elastic-viscoplastic material model proposed in Gudmundson
(2004); Gurtin and Anand (2005); Fleck and Willis (2009). Here, a
small strain formulation is employed. This is a reasonable approx-
imation to the rolling process as the overall straining is propor-
tional to the sheet reduction when limiting this to ~15%. For small
sheet reductions, the strains and the rotations remain small e yet
large plastic strain gradients can evolve (see e.g. Fig. 6). An additive
decomposition of the total strain is applied, so that εij ¼ ε

e
ij þ ε

p
ij,

where εeij is the elastic part and ε
p
ij is the plastic part. The total strain

field is determined from the displacements, which together with
the plastic strain components are determined based on the prin-
ciple of virtual work for the current higher order material. In Car-
tesian components, this reads
Z
V

�
sijdεij þ

�
qij � sij

�
dε

p
ij þ tijkdε

p
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�
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¼
Z
S

�
Tidui þMijdε

p
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�
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where qij is the micro-stress tensor, sij is the Cauchy stress tensor,
sij ¼ sij � dijskk/3 is the stress deviator and tijk is the higher order

stresses, work conjugate to the plastic strain gradients, εpij;k. Here,
( ),k denotes the partial derivative with respect to the coordinate xk.
The right-hand side of Eq. (1) includes both conventional tractions,
Ti ¼ sijnj, and higher order tractions, Mij ¼ tijknk, with nk denoting
the outward normal to the surface S, which bounds the volume V.

Following Fleck and Willis (2009), the higher order stresses
decompose into a dissipative part, tDijk, and a energetic part, tEijk, so
that; tijk ¼ tDijk þ tEijk, whereas the micro-stress is assumed to have a
dissipative part; qij ¼ qDij , only. The dissipative stress quantities read
(Gudmundson, 2004; Fleck and Willis, 2009)
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with the gradient enhanced effective stress identified as;
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enhanced effective plastic strain rate takes a quadratic form, so that
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where, LD is the dissipative length parameter introduced for
dimensional consistency.

Plastic deformations are typically considered to be dissipative,
covering irrecoverable heat energy and cold work, while no free
energy is associated with the plastic strains. However, when large
plastic strain gradients appear (Ashby, 1970), Geometrically
Necessary Dislocations (GNDs) are develop, and this gives rise to
additional free energy associated with the local stress field of the
GNDs, as-well as increased dissipation when the GNDs move in the
lattice (Gurtin, 2002; Ohno and Okumara, 2007). Thus, the total free
energy takes the form

J ¼ 1
2

�
εij � ε

p
ij

�
L ijkl

�
εkl � ε

p
kl

�
þJG (4)

where JG accounts for the free energy associated with GNDs. The
conventional stresses is, thereby, given through the elastic relation;
sij ¼ vJ=vεeij ¼ L ijklðεkl � ε

p
klÞ, with L ijkl being the isotropic elastic

stiffness tensor, while the energetic higher order stresses are
defined as; tEijk ¼ vJ=vε

p
ij;k. The free energy related to GNDs are

often assumed to be quadratic, with respect to the plastic strain

gradients, so that; JG ¼ 1=2GðLEÞ2εpij;kε
p
ij;k. Thus the energetic

higher order stresses read; tEijk ¼ GðLEÞ2εpij;k, where G is the elastic

shear modulus and LE is the energetic length parameter. This setup
is employed throughout the present study, but it is recognized that
an on-going discussion of the form of JG takes place in the liter-
ature (Fleck et al., 2015). In any case, it will become evident from
the results that the energetic contribution has a negligible effect on
sheet rolling.

The developed model rely on a powerelaw relation for the
visco-plastic behaviour, so that

_E
p ¼ _ε0

�
sC

gðEpÞ
�1=m

; with gðEpÞ ¼ sy

�
1þ EEp

sy

�N

(5)

where N is the power hardening exponent, m is the strain rate
hardening exponent and _ε0 is the reference strain rate. Thus,
sC ½Ep; _E

p� ¼ gðEpÞð _Ep= _ε0Þm. Thus, the developed model display sig-
nificant visco-plastic behaviour for large strain rate hardening ex-
ponents, but approaches the response of a gradient enhanced J2-
flow type material in the rate-independent limit (m/0, see e.g.

Fig. 1. Parameterization of the rolling process under steady-state conditions, with
symmetry applied at x2 ¼ 0. Throughout, L/H ¼ 10, with the domain discretized by
equal sized squared elements of side length; L(e)/H ¼ 20, and unit thickness. Not shown
is the width of the sheet in the out-of-plane direction, b.
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