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a b s t r a c t

In this paper, analytical closed-form solutions in explicit forms are presented to investigate small scale
effects on the buckling and the transverse vibration behavior of L�evy-type rectangular nanoplates based
on the Reddy's nonlocal third-order shear deformation plate theory. Two other edges of L�evy-type
rectangular nanoplates may be restrained by different combinations of free, simply supported, or
clamped boundary conditions. Hamilton's principle is used to derive the nonlocal equations of motion
and natural boundary conditions of the nanoplate. Two comparison studies with analytical and nu-
merical techniques reported in literature are carried out to demonstrate the high accuracy of the present
new formulation. Comprehensive benchmark results with considering the small scale effects on fre-
quency ratios, buckling load ratios, non-dimensional fundamental natural frequencies and non-
dimensional buckling loads of rectangular nanoplates with different combinations of boundary condi-
tions are presented for various values of nonlocal parameters, aspect ratios and thickness to length ratios.
It is observed that except for SFSF rectangular nanoplates, as the aspect ratio increases, buckling load and
natural frequency decreases, while keeping all other parameters fixed. For SFSF rectangular nanoplates,
by increasing the aspect ratio, the values of the buckling load and frequency ratio increase.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Many micro and nano devices consist of beams and plates
suspended horizontally over a substrate. On the micro scale, sus-
pended plates serve as the active component of accelerometers,
rate gyroscopes, pressure sensors, chemical sensors, switches,
electrostatic actuators, valves, and pumps. It is reasonable to as-
sume that suspended plates will play a similarly important role on
the nano scale. Therefore, at the design stage, accurate determi-
nation of natural frequencies and buckling load of nanoplates is
very crucial for designers and engineers. To this end, one must
consider small scale effects in order to refine classical theories to
derive the governing equations for nano size structures. The scale
effects are accounted by considering internal size as a material
parameter. Experimental results show that as length scales of a
material are reduced, the influences of long-range interatomic and

intermolecular cohesive forces on the mechanical properties
become prominent and cannot be neglected.

For modeling nanomaterials, a superior theory called nonlocal
theory has been introduced to account for both features of lattice
parameter and classical elasticity. Nonlocal theory of Eringen
(Eringen, 2002) is one of the well-known continuum mechanics
theories to capture the small scale effect by specifying the stress at a
reference point as a functional of the strain field at every point in
the body. Hence, many papers dealt with analyzing nano-structures
have been published on this topic (Bedroud et al., 2013; Hosseini-
Hashemi et al., 2013b, 2013c; Lu et al., 2007; Nazemnezhad and
Hosseini-Hashemi, 2014; Reddy, 2007). Besides, some researchers
suggested definitions for nonlocal parameter and showed its effect
on natural frequency and critical buckling load (Aghababaei and
Reddy, 2009; Aksencer and Aydogdu, 2011, 2012; Ansari et al.,
2011a; Farajpour et al., 2012; Hosseini-Hashemi et al., 2013a,
2014, 2013d; Murmu and Pradhan, 2009a, b; Pradhan, 2009;
Pradhan and Phadikar, 2009;Wang et al., 2007). For example,Wang
et al. (2007) investigated nano scale effect on the free vibration of
Timoshenko beam via nonlocal elasticity theory; and Pradhan and
Phadikar (2009) reported vibration of multilayered graphene
sheets through nonlocal and Mindlin theories. In another work,
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Aghababaei and Reddy (2009) derived equations of motion for
nonlocal third-order shear deformation plate theory and consid-
ered effects of the nonlocal parameter on natural frequencies of a
simply supported rectangular nanoplate. Pradhan (2009) analyzed
Buckling of single layer graphene sheet based on nonlocal elasticity
and higher order shear deformation theory. Furthermore, Farajpour
et al. (2012) studied buckling of orthotropic micro/nanoscale plates
under linearly varying in-plane load using nonlocal continuum
mechanics. It is seen from literature survey that the solution of the
governing equation, however, is based on numerical methods
(finite element method (Ansari et al., 2010a), finite difference
method (Ansari et al., 2011b), Galerkin method (Shen et al., 2012),
differential quadrature method (Ansari et al., 2010b; Pradhan and
Kumar, 2010)) and approximate analytical methods, such as Nav-
ier type solution method which assumes the variation of
displacement variables harmonically (Aghababaei and Reddy,
2009; Lu et al., 2007). In addition, many of these solutions are
based on nonlocal classical and Mindlin theories with Navier
boundary condition in which all edges are simply supported while
in few cases, combinations of clamed and simply supported
boundaries have been taken into account (Aksencer and Aydogdu,
2011; Pradhan and Kumar, 2011). Therefore, no analytical closed-
form solution is available in the literature for the static and dy-
namic analysis of thicker nano scale plate-like structures, multi-
layer graphene and graphite, with various boundary conditions.
Since, at its simplest approximation, a multi-layer graphene sheet
may be represented by an elastic plate with an equivalent thickness
and Young's modulus like the work done by Chandra et al. (2011)
for bilayer graphene sheets, it may be reasonable using higher or-
der shear deformation plate theory to investigate static and dy-
namic behavior of multi-layer graphene sheets.

According to the works of Bedroud et al. (2013), Hosseini-
Hashemi et al. (2013a, 2011a, 2011b, 2008, 2013d), an analytical
closed form solution procedure has been established for vibration
and buckling analyses of single-layered and functionally graded
plates based on some auxiliary and potential functions. This
method has only been considered for local theories as well as
nonlocal Kirchhof andMindlin theories, and can be applied to Levy-
type support conditions and yield results without any approxima-
tions. Therefore, the main purpose of this article is to utilize this
analytical method to solve the governing equations of thick nano-
plate for Reddy plate theory based on nonlocal elasticity. In this
paper analytical closed-form solutions in explicit forms will be
presented for transverse vibration and buckling analyses of rect-
angular thick nanoplates, multi-layer graphene and graphite, based
on the Reddy's nonlocal third-order shear deformation plate the-
ory. Hamilton's principle will be used to derive the equations of
motion and natural boundary conditions of the nanoplate. This
study has ability to capture both small scale effects and quadratic
variation of shear strain and consequently shear stress through the
nanoplate thickness. Benchmark results for natural frequencies and
critical buckling loads of rectangular nanoplates with different
combinations of boundary conditions are tabulated for various
values of nonlocal parameter, aspect ratios and thickness to length
ratios.

2. Problem formulation

2.1. Review of nonlocal theory

As mentioned earlier, in the nonlocal theory, the stress in a
material body point is a function of strain field of the same point
and all other ones in material domain. Thus, the stress tensor plays
the essential role in this continuum theory which is defined as
(Eringen, 2002):

tij ¼
Z
v

aðjx0 � xjÞsijðx0Þdn0 (1)

where the volume integral is taken over the body region v; x is the
reference point in body which the stress tensor is calculated at any
other point like x

0
in the body; i, j¼ x, y, z for three dimensional

Cartesian coordinate; sij is the local stress tensor and aðjx0 � xjÞ is
nonlocal kernel function depends on internal characteristic length.
Eringen proposed aðjx0 � xjÞ as a Green function of a linear differ-
ential operator L as:

L aðjx0 � xjÞ ¼ dðjx0 � xjÞ (2)

Substituting Eq. (2) into Eq. (1), the integral form of nonlocal
stress tensor reduces to the differential one as follows:

L tij ¼ sij (3)

The linear operator is an approximate model of the kernel ob-
tained bymatching the Fourier transforms of the kernel in thewave
number space with the dispersion curves of lattice dynamics. For
curve-fitting at low wave numbers relevant to the small internal
length scale, Eq. (2) is written as:�
1� ε

2V2 þ g4V4 �…

�
tij ¼ sij (4)

Thus, the linear operator becomes:

L ¼
�
1� ε

2V2 þ g4V4 �…

�
(5)

whereε and g are small parameters proportional to the internal
length scale. If first order approximation is to be considered, just
the Laplacian form of the operator in Eq. (5) is maintained
(Alavinasab, 2009). Therefore, for the two-dimensional case:

L ¼ 1� ðe0lÞ2V2 (6)

in which l is internal length and e0 is material constant which is
defined by the experiment and V2 ¼ ðv2=vx2Þ þ ðv2=vy2Þ is the two-
dimensional Laplacian operator.

Equations of motion for nonlocal linear elastic solids are ob-
tained from nonlocal balance law as:

tij;j þ fi ¼ r€ui (7)

where fi and ui are the components of the body force and
displacement vector, respectively, and r is the mass density.
Substituting Eq. (3) into Eq. (7), the nonlocal equations of motion in
a differential form can be expressed by:

sij;j þ L
�
fi � €ui

� ¼ 0 (8)

It should be noted that the boundary conditions here are based
on nonlocal stress tensors tij rather than local ones sij (Lu et al.,
2007).

2.2. Geometrical configuration

Consider a flat, isotropic, and thick rectangular nanoplate of
length a, width b, and uniform thickness h, as shown in Fig. 1. It is
evident that the Levy type plate has two opposite edges simply
supported along x2 axis (i.e. along the edges x1¼0 and x1¼ a)
whereas the other two edges may be free, simply supported or
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