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a b s t r a c t

Computational homogenization for quasistatic stress problems is considered, whereby the macroscale
stress is obtained via averaging on Statistical Volume Elements (SVE:s). The variational “workhorse” for
the subscale problem is derived from the presumption of weak micro-periodicity, which was proposed
by Larsson et al. (2011). Continuum (visco)plasticity is adopted for the mesoscale constituents, whereby a
pseudo-elastic, incremental strain energy serves as the potential for the updated stress in a given time-
increment. Strict bounds on the incremental strain energy are derived from imposing Dirichlet and
Neumann boundary conditions, which are defined as suitable restrictions of the proposed variational
format. For this purpose, both the standard situation of complete macroscale strain control and the (less
standard) situation of macroscale stress control are considered. Numerical results are obtained from
“virtual testing” of SVE:s in terms of mean values and a given confidence interval, and it is shown how
these properties converge with respect to the SVE-size for different prescribed macroscale deformation
modes and different statistical properties of the randommicrostructure. In addition, the upper and lower
bounds for a sequence of increasing strain levels, for a fixed SVE-size, are used as “data” for the cali-
bration of a macroscopic elasticeplastic constitutive model.
© 2014 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The standard approach to account for the effect of randomized
material micro-heterogeneities in constitutive modeling is to
employ fully “nested” macro-subscale modeling based on homog-
enization on a Statistical Volume Element1 (SVE), (c.f. Michel et al.,
1999; Miehe et al., 1999; Miehe and Koch, 2002; Torquato, 2002;
Ostoja-Starzewski, 2006, 2008; Kouznetsova et al., 2002; Geers
et al., 2010; Zohdi andWriggers, 2001, 2005; Temizer andWriggers,
2008; Roters et al., 2010; Schr€oder et al., 2011; Danielsson et al.,
2007). Although the basic procedure is now quite well established,
many issues are still unresolved, for example in relation to the
model assumptions that are (implicitly and explicitly) made as part
of the computation. Among the issues are (1) to formulate and

analytically assess the effectiveness of different prolongation con-
ditions to the subscale (within the SVE) and to (2) establish rigorous
bounds on energetic measures based on “virtual testing” of
randomly chosen “samples” of the microstructural arrangement.

As to the first issue, it is clear that different model assumptions
are possible in terms of the imposed boundary conditions and the
appropriate variational format of the SVE-problem. The classical
conditions are those of zero displacement fluctuation field
(Dirichlet), boundary tractions generated by a constant macroscale
stress tensor (Neumann) and (strong) micro-periodicity, defined by
periodic displacement fluctuations and anti-periodic tractions.
There is ample numerical evidence that periodic boundary condi-
tions are efficient even when the microstructure is non-periodic
(which is the most common situation). By “efficient” we here
denote the property that the results converge rapidly when the
SVE-size is increased (while the length-scale of the subscale fea-
tures is kept fixed). However, it can not be generally proved for an
arbitrary type of nonlinear and dissipative subscale constitutive
assumption that the choice of periodic boundary conditions give
the “best” results for a given size of the subscale computational
domain on which the SVE-problem is defined. In this paper, we use
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1 We prefer the notion SVE rather than the commonly used Representative
Volume Element (RVE) since the fact that SVE:s of finite size are not truly repre-
sentative is the topic of this paper.
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a recently proposed weak form of micro-periodicity condition as a
“work-horse” (Larsson et al., 2011). This format has a number of
properties that are believed to be advantageous. For example, this
format encompasses in a quite direct fashion (1) the classical
“strong format” of micro-periodicity and (2) the Neumann
boundary condition on tractions. As it turns out, the Neumann
boundary condition is completely equivalent to the weakest
possible form of displacement micro-periodicity. Moreover, (3) the
Dirichlet boundary condition can also be obtained from this vari-
ational format by restricting the space of displacements in a suit-
able way. The resulting formulation is, however, “non-
conventional” from an operational point of view (as discussed
below).

As to the second issue (which is the main focus in this paper), it
is first noted that a wealth of literature has been devoted to the
issue of providing upper and lower bounds to the expected value of
the effective stiffness in elasticity. Examples are Teply and Dvorak
(1988), Huet (1990), Hazanov and Huet (1995), Suquet (1993),
Suquet (1977), Zohdi and Wriggers (2001, 2005), Ostoja-
Starzewski (2008), Salmi et al. (2012) and Brisard et al. (2013).
However, the expected value is never computable in practice; only
the mean values are. Therefore, the main contribution in this paper
regards the procedure and strategy to achieve both upper and
lower bounds with a given confidence based on computations for a
given SVE-size. This task turns out to not be entirely trivial,
particularly not for nonlinear and dissipative material models (such
as elasto-plasticity).

The paper is organized as follows: After giving a summary of the
essential assumptions and the variational framework for (first or-
der) computational homogenization in Sections 2 and 3, we outline
the SVE-problem pertinent to the proposed variational micro-
periodicity condition for macroscale strain and stress control in
Section 4. The main part is Section 5, which deals with energetic
bounds based on statistical considerations. Finally, in Section 6 we
illustrate the ideas with the aid of a few numerical examples on
SVE-computations. The paper is concluded by final remarks and an
outlook to future work.

2. Homogenization of quasistatic stress problem

2.1. Preliminaries

Consider the spatial domain U with boundary G. The usual
continuum relations are assumed to apply on the subscale such that
the equilibrium equation representing quasi-static response reads.

�s$V ¼ f in U; (1)

where s is the stress, V is the spatial gradient with respect to co-
ordinates x2U, and f is the body force. As to the relevant boundary
conditions on G, we have the usual Neumann condition
t¼defs$n ¼ tp on GN, where n is a unit normal vector, and the
Dirichlet condition u ¼ up on GD. In order to simplify the subse-
quent discussion on homogenized properties and avoid unnec-
essary technical details, we shall henceforth assume that tp ¼ 0.

Constitutive relations are needed to determine s in terms of the
(subscale) strain ε½u� ¼defðu5VÞsym and, possibly, a set of internal
variables k expressing dissipative mechanisms such that sðε; kÞ.
Upon integrating the corresponding evolution equations in time
and solving for k for given ε, we obtain the algorithmic stress-
deformation relation.saðεÞ ¼defsðε; kaðεÞÞ2 Note that any algorithmic
variable is an implicit function of its argument; however, this fact is

not stressed further. The relation is explicit only if the material
response is elastic.

Due to the excessive effort in resolving the fine scale represen-
tation, homogenization is introduced. The classical approach
(which is adopted in this paper) is to introduce “model-based ho-
mogenization”, whereby a local field y is replaced by the “running”
volume average:

yðxÞ1〈y〉,ðxÞ ¼def 1
jU,ðxÞj

Z
U,

y dV ; x2U (2)

representing a smoothing approximation on a Statistical Volume
Element (SVE). In practice, the SVE:s are finite-sized and occupies
the subscale region U,ðxÞ with boundary G,.3 The typical
dimension of an SVE is L, ¼ ðjU,jÞ1=ndim , where ndim2{1, 2, 3} is
the spatial dimension. The SVE is centered at the macroscale po-
sition4 x¼defð1=jU,jÞ R

G,

x dS for any given x2U.
In order to establish the homogenized version of the weak

format of equilibrium, we introduce the space-variational forms.

aðu; duÞ ¼def
Z
U

〈sðε½u�Þ : ε½du�〉, dV ; lðduÞ ¼def
Z
U

〈f $du〉, dV

(3)

representing the internal and external virtual work, respectively, of
the homogenized problem. The appropriate homogenized virtual
work relation is thus given as: Find u2U s.t.

aðu; duÞ ¼ lðduÞ; cdu2U0 (4)

Inside each SVE, the subscale displacement field is split into one
smooth part, uM, and the subscale fluctuation, us, i.e. u ¼ uM þ us.
The scales are linked by expressinguMðx; xÞ5 for x2U and x2U,ðxÞ
in terms of the macroscale solution uðxÞ in an explicit fashion and
defining the approximate solutionus ¼ usfug6 for given u. This
(implicit) relation allows for computing the homogenized quanti-
ties in (3). Moreover, we introduce the standard assumption on
(model-based) first order homogenization, according to which the
macroscale field uM varies linearlywithin each SVE. This means that
we expand uM as.

uMðx; xÞ ¼ uðxÞ þ εðxÞ$½x� x�; x2U; x2U,ðxÞ: (5)

Here we introduced the (smooth) macroscopic displacement
field u and the corresponding strain field ε¼defðu5VÞsym ¼ ε½u�.

It is now tacitly used that the variation du can be defined as the
sensitivity7 for a variation du and thus can be expressed as
du ¼ duM þ ðusÞ0fu; dug, where

duM ¼ duþ dε$½x� x� (6)

Upon setting du ¼ duM in (4), we obtain the macroscopic
problem as that of finding u2U that solves the homogenized
problem.

aðufug; duMðduÞÞ ¼ lðduMðduÞÞ cdu2U
0
: (7)

2 Henceforth, the subindex “a” is dropped without the risk of confusion.

3 Henceforth, the argument x is suppressed unless there is a risk of confusion.
4 The choice is not unique: Another possibility is x ¼ 〈x〉, .
5 Double arguments, e.g. uðx; xÞ, are used to explicitly point out the underlying

scale separation.
6 Curly brackets {(�)} indicate implicit and/or nonlocal functional dependence on

(�).
7 The sensitivity is defined as the Gateaux-derivative ðusÞ0fu; dug ¼defðv=vεÞ

usfuþ εdug��
ε¼0.
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