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a b s t r a c t

Using recent results obtained by Dormieux and Kondo (2010) on strength properties of ductile nano-
porous media, we aim at investigating the mechanical behaviour of this class of materials. To this end, we
first assess and validate the yield criterion proposed by these authors by performing numerical limit-
analyses, based on the standard finite element method including elasticity, of an elementary porous
cell. This requires special care in order to account for surface stresses at the void's boundary. Then, taking
advantage of the normality property for the flow rule to derive the porosity and void size evolution
equations, we formulate a complete model for ductile nanoporous materials. Owing to the parametric
form of the yield locus, a specific procedure is developed for the numerical implementation of the model.
The problem of plastic correction of the elastic stress predictor is reduced to the resolution of two
nonlinear equations. Finally, the model is applied to proportional loadings, for different stress tri-
axialities. The void size appears to have a strong influence on the mechanical behaviour and on the
porosity evolution.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Ductile fracture of metals occurs through growth and coales-
cence of voids. In order to describe the macroscopic behaviour of
plastic porous materials, Gurson (1977) derived a model by
combining homogenization and limit-analysis of a spherical (or
cylindrical) cell made of a von Mises matrix containing a spherical
(or cylindrical) void, and subjected to conditions of homogeneous
boundary strain rate. Gurson (1977)'s model has been extended in
several directions, including the consideration of void shape effects,
by Gologanu et al. (1993, 1994, 1997); Monchiet et al. (2014) for
spheroidal cavities, and more recently Madou and Leblond
(2012a,b) for arbitrary ellipsoidal voids. Other extensions have
been proposed in order to account for matrix plastic anisotropy, by
Benzerga and Besson (2001) for spherical or cylindrical voids, and
Monchiet et al. (2008); Keralavarma and Benzerga (2010) for
spheroidal voids.

Despite their great interest in practical situations, none of the
above models is suitable for the description of the growth of sub-
micron voids. Indeed, it is well known that the plastic flow strength

and the hardening of a solid depend on the gradient of the plastic
strain; the effect is important for plastic deformations taking place
at small scales, of the order of a micron or less, which is the case
when submicron voids are present. To account for such effects,
Fleck and Hutchinson (1993), Fleck et al. (1994), Fleck and
Hutchinson (1997), developed a phenomenological model of plas-
ticity known as strain gradient plasticity, whereby the material
behaviour depends on both the plastic strain and the plastic strain
gradient. This model has permitted to evidence size effects in void
growth, first for an isolated void (Huang et al., 2000; Fleck and
Hutchinson, 2001) and then for finite porosities (Niordson, 2008).
In addition to these numerical works, Monchiet and Bonnet (2013)
revisited Gurson (1977)'s homogenization of a hollow sphere, by
considering a matrix obeying a strain gradient plasticity model;
their yield criterion, obtained by introducing some approximations
to calculate the macroscopic plastic dissipation, exhibited a void
size dependency: when the void size decreases, the size of the yield
locus increases and the void growth rate decreases.

If size effects due to strain gradients are well understood for
micron-sized voids, the physics of nano-sized voids, in contrast, is
still in its infancy. Various atomistic simulations have evidenced a
drastic increase of the strength of nanovoids (Traiviratana et al.,
2008; Mi et al., 2011; Tang et al., 2014), due to the presence of
surface effects at the interface between the bulk material and the* Corresponding author.
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empty void; these effects are commonly attributed to surface
stresses and nucleation of dislocations. In order to account for them
Dormieux and Kondo (2010) extended Gurson (1977)'s model by
representing the cavity surface through a stress interface model
(Gurtin and Murdoch, 1975, 1978), that is by schematizing it as a
thin layer obeying a plane stress von Mises (isotropic) criterion.1

This interface model consists in a simple heuristic continuum
mechanics representation of crystalline plasticity that takes place
at the nanoscale; even though this kind of criterion may be ques-
tionable at such a scale, it is acceptable as a first approximation and
permits to perform analytically a limit-analysis of a hollow sphere
including surface effects. The macroscopic yield criterion obtained
by Dormieux and Kondo (2010) is expressed in terms of parametric
equations of the macroscopic yield locus, and exhibits a void size
dependency: again, the size of the yield locus increases when the
pore size decreases.

The assessment of Dormieux and Kondo (2010)'s macroscopic
yield criterion, and the numerical integration of the corresponding
constitutive equations, which are needed for future applications of
themodel to the growth of nanosized voids, are themain objectives
of this paper.

The paper is organized as follows:

� In Section 2, we numerically assess Dormieux and Kondo
(2010)'s criterion by performing numerical limit-analyses of a
hollow sphere with an interface model at the void's boundary,
based on the standard finite element method including
elasticity.

� The criterion is then completed in Section 3 by providing the
flow rule and the evolution equations of the internal
parameters.

� In Section 4, a numerical implementation of the complete model
is proposed. The local algorithm of plastic correction of the
elastic stress predictor is reduced to the resolution of two
coupled nonlinear equations on two unknowns.

� Finally, Section 5 provides a numerical application of the model,
in the form of computation of the behaviour of a homogeneous
volume element subjected to some axisymmetric proportional
loading at fixed stress triaxiality.

2. Numerical assessment of Dormieux and Kondo (2010)'s
criterion

2.1. Dormieux and Kondo (2010)'s macroscopic criterion

We consider Dormieux and Kondo (2010)'s homogenized cri-
terion for ductile nanoporous materials, which has been obtained
from a limit-analysis of a single hollow sphere (see Fig. 1).

The strength of the solid phase is described by a von Mises
criterion:

s2eq ¼ 3
2
sd : sd � s20 (1)

where seq is the von Mises equivalent stress, sd the deviator of the
stress tensor s and s0 the yield stress in simple tension. The void
size effect is introduced by accounting for the presence of an
interface at the void's boundary. The strength of this interface is
described by a 2D plane stress von Mises-type criterion:

3
2
sS
d : sS

d � k2int (2)

where sS
d is the deviatoric part of the plane stress tensor sS and kint

represents the yield limit of the interface. (Note that the plane
stress tensor sS is expressed in N/m, not in N/m2). The void size
effect is thus characterized by a non-dimensional parameter G,
depending on the void radius a, the interface strength kint and the
yield stress s0, defined as:

G ¼ kint
as0

: (3)

In the following, G will be referred to as the “interface non-
dimensional parameter”.

Both the bulk material and the interface obey the plastic flow
rule associated to the relevant yield criterion through normality.

The limit-analysis of the hollow sphere of internal radius a,
external radius b, porosity f ¼ a3/b3, taking account of a von Mises
interface, leads to the following parametric equations of the
macroscopic yield locus (Dormieux and Kondo, 2010):
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where S denotes the macroscopic stress tensor, Seq the macro-
scopic von Mises equivalent stress, and the parameter x ¼ (2/f)(Dm/
Deq) is defined from the mean and equivalent deviatoric parts Dm,
Deq of the macroscopic strain rate D.

2.2. Numerical limit-analysis

It has been shown by Madou and Leblond (2012b) that limit-
analysis problems can be solved by the standard finite element
method including elasticity, by using a large load increment
without geometry update. Indeed, under such conditions the time-
discretized equations of the finite element problem become
equivalent to those of limit-analysis, provided that the local prob-
lem of “projection onto the yield locus” (plastic correction of the
elastic stress predictor) is solved using an implicit algorithm.

We use the commercial finite element code SYSTUS® developed
by ESI Group to perform the calculations. We consider a spherical

Fig. 1. Representative Volume Element for the nanoporous material.

1 Recently, Monchiet and Kondo (2013) extended Dormieux and Kondo (2010)'s
work by considering Gologanu et al. (1993, 1994)'s criterion for spheroidal voids
instead of that of Gurson (1977) for spherical ones.
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