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a b s t r a c t

This work treats theoretical and numerical aspects of configurational forces with application to fracture
mechanics of electroactive polymers (EAPs) modelled in the continuum mechanics based context of large
strain quasi-incompressible electro-viscoelasticity. We adopt a four-field formulation to take the quasi-
incompressible behaviour in a finite element framework into account. We discuss the numerical
implementation of viscosity-related evolution equations and the implications of viscous internal vari-
ables on the computation of configurational forces. As numerical examples for time depending crack
driving forces we discuss a pre-cracked stacked EAP actuator as well as a pre-cracked and pre-stretched
block actuator.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Electroactive polymers (EAP) are an interesting class of mate-
rials that show electro-mechanical coupling. An applied electric
field leads to a mechanical deformation of the EAP, and thus this
class of materials is of continuously growing interest in technical
applications such as actuators, sensors, micro-robotics, bio-
mimetrics and energy harvesting, see e.g. Kornbluh et al. (1998),
Pelrine et al. (2000), Bar-Cohen Stewart et al. (2002), Samatham
et al. (2007), Capri et al. (2008). In all these applications EAPs un-
dergo cyclic deformation, thus fracture mechanics in the sense of
fatigue crack growth are of key importance. In this regard, the
theory of configurational forces provides a suitable theory to
calculate crack driving forces, see Maugin (1993), Gurtin (2000),
Trimarco and Maugin (2001), Maugin (2011). Related to the nu-
merical modelling of EAPs, finite element implementations were
reported, e.g. by Vu et al. (2007), Vu and Steinmann (2007b), Gao
et al. (2011), Klassen et al. (2012), Henann et al. (2013), Klinkel
et al. (2013) for the electro-elastostatic case and by Park et al.
(2012) for the dynamical electro-elastic case. For large strain
electro-elastostatics, Vu and Steinmann (2007b) presented the
numerical computation of discrete configurational forces for a pre-

cracked specimen under Mode-I load as well, whereas Miehe et al.
(2010) and Xu et al. (2010b) developed electromechanical fracture
models based on a phase field theory for piezoelectric materials. A
further branch of current research deals with the enhancement of
the electro-mechanical coupling by microstructural optimisation,
see e.g. Tian et al. (2012), Rudykh et al. (2013), Gei et al. (2013). Most
works are based on the modelling of electro-mechanical behaviour
of EAPs by electro-hyperelasticity, whereas the pronounced visco-
elastic behaviour of EAPs was very recently introduced in the
context of the finite element method by Ask et al. (2012a,b) and
Bueschel et al. (2013).

Our work focuses on the theoretical and numerical aspects of
configurational forces with application to EAPs modelled in the
continuum mechanics based context of large strain quasi-
incompressible electro-viscoelasticity. The paper is organised as
follows: In Sections 2e4 we discuss kinematics, electric field, bal-
ance laws and a general constitutive model for electro-
viscoelasticity. Section 5 deals with the introduction of a four
field formulation of the weak form and its discretisation to take the
quasi-incompressible material behaviour of EAPs into account. The
notion of configurational forces in the context of electro-
viscoelasticity and their numerical computation is addressed in
Section 6. Finally, we present the material model together with its
numerical implementation and discuss two- and three-
dimensional numerical examples for pre-cracked EAP actuators in
Section 7.
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2. Kinematics and electric field

To introduce notation we briefly summarise the geometrically
nonlinear kinematics of the spatial motion problem, see also Fig. 1.
In the spatial motion problem the placement x of a ‘physical
particle’ in the spatial configuration B t at time t is described by a
nonlinear deformation mapping x ¼ 4(X,t) in terms of the place-
ment X of the same ‘physical particle’ in the chosen material
configuration B 0 at time t0 ¼ 0. The deformation gradient, i.e. the
linear tangent map associated with the deformation mapping, is
given by F ¼ VX4 together with its determinant J ¼ det F. As this
work proceeds, we assume purely isochoric behaviour of the
viscous part of our electro-viscoelastic material model and,
moreover, we split the deformation gradient multiplicatively into
its volumetric part J and its isochoric part F ¼ J�1=3F with
det F ¼ 1.

Furthermore, we use the constitutive framework of a multipli-
cative split of the isochoric part of the deformation gradient into an
elastic and a viscous part. This can be interpreted as a generalisa-
tion of a one-dimensional rheological Maxwell element to three
dimensions, see e.g. Lubliner (1990), Maugin (1992). When
considering n parallel Maxwell elements, the multiplicative split of
the isochoric part of the deformation gradient is introduced for
each Maxwell element by

F ¼ J�1=3F ¼ Fea$Fva with a ¼ 1;…;n (1)

In addition, we assume that the viscous part Fva is purely iso-
choric, i.e. det Fva ¼ 1, thus Fea ¼ J�1=3Fea with Fea ¼ F$F�1

va and
det Fea ¼ 1. With this at hand, we adopt different right Cauchye-
Green-type tensors as deformation measures referring to

C ¼ Ft$F total deformation (2)

C ¼ F
t
$F total isochoric deformation (3)

Cea ¼ F
t
ea$Fea elastic isochoric deformation (4)

Cva ¼ Ft
va$Fva viscous ðisochoricÞ deformation (5)

Assuming that no magnetic fields and no free currents are
present, the electric field vector satisfies Faraday's law in the form

VX � E ¼ 0 in B 0 and Vx � e ¼ 0 inB t (6)

Thus, the electric field vector can be expressed as the gradient of
an electric potential f as

E ¼ �VXf inB 0 and e ¼ �Vxf in B t (7)

whereby the material electric field vector E ¼ e $ F is seen as the
pull back of the spatial electric field vector e.

3. Balance laws

The quasi-static balance of momentum of the spatial motion
problem in local form and in the presence of an electric field is
given by

Vx$tþ bt ¼ 0 inB t (8)

where bt is the volume specific body force. The total spatial stress,
see Maugin (1988), Hutter et al. (2006), Dorfmann and Ogden
(2006), is introduced as

t ¼ sþ e5d� 1
2

30½e$e�I (9)

Hereby s is the Cauchy stress, d the spatial electric displacement,
both of which have to be determined by constitutive relations, I
represents the second order identity tensor and 30 denotes the
permittivity in vacuum. The corresponding local balance of mo-
mentum referring to the material configuration B 0 is based on the
total Piola-type stress tensor P ¼ t $ cof F, with the cofactor
cof F ¼ JF�t, and reads

VX$P þ b0 ¼ 0 and b0 ¼ Jbt inB 0 (10)

as VX $ cof F ¼ 0. The balance law with respect to the electric field
for the special case of vanishing electric charges is the electric
Gauss' law

Vx$d ¼ 0 in B t (11)

with the spatial electric displacement d.
In the material configuration B 0 the corresponding electric

displacement is given as D ¼ d $ cof F, and thus the balance law can
also be expressed as

VX$D ¼ 0 inB 0 (12)

4. Constitutive relations

As this work proceeds, we assume an energy function of the
form

U0ðF;E;CvaÞ ¼ jvol
0 ðJÞ þ j∞

0
�
F
�þX

a

ja
0
�
F;Cva

�þ jmel
0

�
F;E

�
þ jel

0 ðEÞ �
1
2

30JC
�1 : ½E5E�

(13)

where jvol
0 ðJÞ and j∞

0 ðFÞ describe the volumetric and isochoric

hyperelastic response, and where
P
a
ja
0ðF;CvaÞ describes the

viscous behaviour of the material. The electro-mechanical coupling

is modelled by jmel
0 ðF;EÞ, and the contribution jel

0 ðEÞ � 1=2 30JC
�1 :

½E5E� defines the purely electrostatic behaviour; see, e.g., Vu andFig. 1. Fields in the material and spatial configuration.
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