ELSEVIER

Contents lists available at ScienceDirect

European Journal of Mechanics A/Solids

journal homepage: www.elsevier.com/locate/ejmsol

Viscous interfaces as source for material creep: A continuum micromechanics approach[☆]

M. Shahidi, B. Pichler, Ch. Hellmich*

Institute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), Karlsplatz 13/202, A-1040 Vienna, Austria

ARTICLE INFO

Article history: Received 2 November 2012 Accepted 2 November 2013 Available online 15 November 2013

Keywords: Multiscale creep model Liquid crystals Viscous interfaces

ABSTRACT

It is generally agreed upon that fluids may play a major role in the creep behavior of materials comprising heterogeneous microstructures and fluid-filled porosities at small length scales. In more detail, nanoconfined fluid-filled interfaces are typically considered to act as a lubricants, once electrically charged solid surfaces start to glide along fluid sheets, with the fluid being typically in a liquid crystal state, which refers to an "adsorbed", "ice-like", or "glassy" structure of fluid molecules. Here, we aim at translating this interface behavior into apparent creep laws at the continuum scale of materials consisting of one non-creeping solid matrix with embedded fluid-filled interfaces. To this end, we consider a linear relationship between (i) average interface dislocations and (ii) corresponding interface tractions, with an interface viscosity as the proportionality constant. Homogenization schemes for eigenstressed heterogeneous materials are used to upscale this interface behavior to the much larger observation scale of a matrix-inclusion composite comprising an isotropic and linear elastic solid matrix, as well as interacting parallel interfaces of circular shape, which are embedded in the aforementioned matrix. This results in exponentially decaying macroscopic viscoelastic phenomena, with both creep and relaxation times increasing with increasing interface size and viscosity, as well as with decreasing elastic stiffness of the solid matrix; while only the relaxation time decreases with increasing interface density. Accordingly, non-asymptotic creep of hydrated (quasi-) crystalline materials at higher load intensities may be readily explained through non-stationarity, i.e. spreading, of liquid crystal interfaces throughout solid elastic matrices.

© 2013 The Authors. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

It is generally agreed upon that water may play a major role in the creep behavior of materials comprising heterogeneous microstructures with water being embedded into those; as is encountered, among others, in the realm of geophysics (Morrow et al., 2000; Stipp et al., 2006; Tullis and Yund, 1991), in cementitious materials like concrete (Bažant et al., 1997; Alizadeh et al., 2010; Kalinichev et al., 2007; Vlahinić et al., 2012; Youssef et al., 2011), in alcohol-based surfactant-water system (Németh et al., 1998; Cordobés et al., 1997), or in hard biomedical materials like bone or bone cements (Vlahinić et al., 2012; Eberhardsteiner et al., 2012; Arnold and Venditti, 2001). Hence, creep increases with increasing water content, as described for bone in Sasaki et al. (1993). Water

layers in a somewhat ice-like structured (or "glassy" (Lombardo et al., 2009)) state qualify as "liquid crystals". The latter term refers to matter which is right in between the long-range positional and orientational order found in solids and the long-range disorder found in liquids. The creep phenomena in liquid crystal systems have been extensively studied also beyond the presence of water, e.g. for polymers (Berghausen et al., 1997; Brostow et al., 1999; Colby et al., 2001) or ferroelectrics (Jezewski et al., 2008). More specifically, the intimate bounding of water molecules to electrically charged solid surfaces as well as the "lubricant effect" of the fluid once the solid surfaces start to glide along the water sheets are thought of as the origins of the creep process, as is supported by various experimental and computational chemistry studies (Alizadeh et al., 2010; Kalinichev et al., 2007; Vlahinić et al., 2012; Manzano et al., 2012). What is somehow lacking in this respect, is the explicit mathematical consideration of how the lubrication effect of water on 2D interfaces results in creep properties of a bulk of material hosting such surfaces. As a contribution to this somehow open problem, the present paper describes a micromechanical framework which allows for translation of creep laws for interfaces, into the resulting creep laws at the continuum scale of materials

[†] This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

^{*} Corresponding author. Tel.: +43 15880120220; fax: +43 158801920220. E-mail address: christian.hellmich@tuwien.ac.at (Ch. Hellmich).

Nomenclature		$D_{ii,jk}^{\Sigma, \mathrm{lim}}$	jk – th component of $\underline{\underline{D}}_{ij}^{\Sigma, \lim}; j, k \in \{x, y, z\}$
		$\underline{e}_{x}, \underline{e}_{y}, \underline{e}_{z}$	
a	radius of an oblate spheroid	E E	macroscopic strain tensor
A ≣i	fourth-order strain concentration tensor of oblate	<u>E</u> <u>E</u> ∞	remote strain tensor of Eshelby-type matrix-inclusion
•	inclusion phase	≅∞	problem
<u>A</u>	fourth-order strain concentration tensor of solid	F	<u>E</u> in first load case
≡s Δ ∞	fourth-order strain concentration tensor of oblate	<u>E</u> ₁ <u>E</u> ₁₁	<u>E</u> in second load case
≟i		<u>≒</u> II	-
	inclusion phase in Eshelby-type matrix-inclusion	E_s E_{jk} $E_{\alpha z}^0$ $\Delta E_{\alpha z}^\infty$	Young's modulus of the solid phase jk — th component of \underline{E} ; $j, k \in \{\alpha, x, y, z\}$
	problem	<i>∟</i> jk ⊑ 0	initial macroscopic shear strains in a creep experiment
<u>A</u> lim	limit of $\underline{\underline{A}}_{i}$ for flat interfaces	ΛF^{∞}	asymptotically reached increment of creeping shear
$ \underline{\underline{\underline{A}}}_{i}^{\lim} $ $ \underline{\underline{\underline{A}}}_{i}^{\lim} $	third-order strain concentration tensor describing the	$\Delta L_{\alpha Z}$	strains
≟i		f_i	volume fraction of inclusion phase
	influence of macroscopic strain on the average	f_s	volume fraction of solid phase
. V lim	displacement jump of flat interfaces	i	index for inclusion and interface phases
$\underline{\underline{\underline{A}}}_{i}^{\Sigma,\lim}$	third-order strain concentration tensor describing the	<u>I</u>	symmetric fourth-order identity tensor
	influence of macroscopic stress on the average displacement jump of flat interfaces	I E I Edev	deviatoric part of $\underline{\underline{I}}$
$A_{i,jkm}^{\lim}$	jkm – th component of $\underbrace{A}_{\equiv i}^{\lim}$; $j, k, m \in \{x, y, z\}$	<i>I</i> ≝vol	volumetric part of $\underline{\underline{I}}$
ı,jkm aΣlim		=voi 1	second-order identity tensor
$A_{i,jkm}^{\Sigma,\lim}$	jkm – th component of $\underline{\underline{A}}_{i}^{\Sigma,\lim}$; $j, k, m \in \{x, y, z\}$	<u>1</u> i	index $j \in \{x, y, z\}$
$\underline{\underline{B}}_{i}^{\text{lim}}$	third-order influence tensor describing the influence		fourth-order creep tensor
=1	of interfacial eigentractions of flat interfaces on the	J ≣∟ Jijkl	-
	macroscopic stress	Jijkl	ijkl – th components of J
$\underline{\underline{B}}_{i}^{\Sigma, \text{lim}}$	third-order influence tensor describing the influence	k	index $k \in \{x, y, z\}$ =
≣i	of interfacial eigentractions on the macroscopic strain	$k_{ m s}$ l	bulk modulus of solid phase characteristic size of RVE
nlim		m	index $m \in \{x, y, z\}$
$B_{i,jkm}^{\lim}$	jkm – th component of $\underline{\underline{B}}_{i}^{\lim}$; $j, k, m \in \{x, y, z\}$	n	index $n \in \{x, y, z\}$
$B_{i,jkm}^{\Sigma,\mathrm{lim}}$	jkm —th component of $\underline{\underline{B}}^{\Sigma, \lim}_{z}$; $j, k, m \in \{x, y, z\}$	N	number of interfaces inside the RVE, making up the
C	half opening of an oblate spheroid fourth-order stiffness tensor of oblate inclusion phase	D	interface phase fourth-order Hill tensor, accounting for inclusion shape
<u>≡</u> i		<u></u>	
€,	fourth-order stiffness tensor of solid	<u>P</u> <u>=</u> P <u>=</u> i	fourth-order Hill tensor of oblate inclusion phase
C = i C = s C = hom C lim = hom	fourth-order homogenized stiffness tensor	r	radial coordinate of a cylindrical coordinate system
C lim	limit case of C for flat interfaces	RVE	Representative Volume Element fourth-order relaxation tensor
hom	limit case of \subseteq for flat interfaces \subseteq hom	$\frac{R}{\equiv}$ R_{ijkl}	
(<u>C</u>	inverse of $\subseteq_{\text{hom}}^{\text{lim}}$, i.e. homogenized compliance tensor		ijkl – th components of R
	for flat interfaces	S	index for solid phase =
d	interface density parameter	<u>S</u> <u>=</u> i	fourth-order Eshelby tensor of oblate inclusion phase
d <i>r</i>	differential of r	$S_{i,jkmn}$	$jkmn$ – th component of $\underline{\underline{S}}$; $j, k, m, n \in \{x, y, z\}$
du	differential of <i>u</i>	$\underline{\underline{\underline{T}}}_{i}$	fourth-order morphology tensor for flat inclusions;
$\mathrm{d}\Omega$	differential volume	=1	abbreviation for $\lim_{\omega \to 0} \omega \stackrel{\triangle}{=}_i^{\infty}$
$\stackrel{D}{\equiv}_{ii}$	fourth-order influence tensor describing the influence	\boldsymbol{T}	
-	of eigenstresses in oblate inclusion phase on its total	$T_{i,jkmn} \ \underline{T}_i^E \ T_{i,j}^E$	$jkmn$ — th component of $\underline{\underline{T}}_{i,j}$; $j, k, m, n \in \{x, y, z\}$ viscous eigentraction vector of interface phase
	strains	<u>I</u> į̃	
$\stackrel{\underline{\underline{D}}}{=}_{ii}^{\text{lim}}$	fourth-order limit of $\underline{\underline{\underline{\underline{D}}}}_{ij}$ for flat interfaces		<i>j</i> -th component of \underline{T}_i^E ; $j \in \{\alpha, z\}$ integration variable
$\underline{\underline{D}}_{ii}^{\lim}$	second-order influence tensor describing the influence	и х, у, z	Cartesian coordinates
=11	of interfacial eigentraction on the average	<u>x</u> , y, z	position vector
	displacement jump	<u>x</u> +	position vector labeling geometrical points at upper
$\underline{\underline{D}}_{ii}^{\Sigma, \mathrm{lim}}$	second-order influence tensor describing the influence	_	boundary of the spheroidal oblate inclusion
≟ii	of interfacial eigentraction on the average	<u>x</u> -	position vector labeling geometrical points at lower
	displacement jump		boundary of the spheroidal oblate inclusion
$\underline{\underline{\underline{D}}}_{si}$	fourth-order influence tensor describing the influence	z(r)	half opening of an oblate spheroid, measured relative
≡_si			to the midplane of the oblate spheroid, at a distance r
	of eigenstresses in oblate inclusion phase on the total solid phase strains		from the center on the long axis $(z(0) = c)$
Dlim		α	index $\alpha \in \{x, y\}$
$D^{ m lim}_{ii,jkmn}$	$jkmn$ – th component of $\underline{\underline{\underline{\underline{\underline{\underline{l}}}}}}_{ii}^{lim}$; $j, k, m, n \in \{x, y, z\}$	δ	Kronecker delta
$D_{ii,jk}^{\mathrm{lim}}$	jk – th component of $\underline{\underline{D}}_{ii}^{\lim}$; $j, k \in \{x, y, z\}$	<u>£</u>	microscopic strain tensor
,		<u>ε</u> i	average strains of the oblate inclusion phase

Download English Version:

https://daneshyari.com/en/article/7170469

Download Persian Version:

https://daneshyari.com/article/7170469

<u>Daneshyari.com</u>