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a b s t r a c t

It is generally agreed upon that fluids may play a major role in the creep behavior of materials comprising
heterogeneous microstructures and fluid-filled porosities at small length scales. In more detail, nano-
confined fluid-filled interfaces are typically considered to act as a lubricants, once electrically charged solid
surfaces start to glide along fluid sheets,with thefluid being typically in a liquid crystal state, which refers to
an “adsorbed”, “ice-like”, or “glassy” structure of fluid molecules. Here, we aim at translating this interface
behavior into apparent creep laws at the continuum scale of materials consisting of one non-creeping solid
matrix with embedded fluid-filled interfaces. To this end, we consider a linear relationship between
(i) average interface dislocations and (ii) corresponding interface tractions, with an interface viscosity as the
proportionality constant. Homogenization schemes for eigenstressed heterogeneous materials are used to
upscale this interface behavior to the much larger observation scale of a matrix-inclusion composite
comprising an isotropic and linear elastic solid matrix, as well as interacting parallel interfaces of circular
shape, which are embedded in the aforementioned matrix. This results in exponentially decaying macro-
scopic viscoelastic phenomena, with both creep and relaxation times increasing with increasing interface
size and viscosity, as well as with decreasing elastic stiffness of the solid matrix; while only the relaxation
time decreases with increasing interface density. Accordingly, non-asymptotic creep of hydrated (quasi-)
crystalline materials at higher load intensities may be readily explained through non-stationarity, i.e.
spreading, of liquid crystal interfaces throughout solid elastic matrices.

� 2013 The Authors. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

It is generally agreed upon that water may play a major role in
the creep behavior of materials comprising heterogeneous micro-
structures with water being embedded into those; as is encoun-
tered, among others, in the realm of geophysics (Morrow et al.,
2000; Stipp et al., 2006; Tullis and Yund, 1991), in cementitious
materials like concrete (Ba�zant et al., 1997; Alizadeh et al., 2010;
Kalinichev et al., 2007; Vlahini�c et al., 2012; Youssef et al., 2011),
in alcohol-based surfactant-water system (Németh et al., 1998;
Cordobés et al., 1997), or in hard biomedical materials like bone
or bone cements (Vlahini�c et al., 2012; Eberhardsteiner et al., 2012;
Arnold and Venditti, 2001). Hence, creep increases with increasing
water content, as described for bone in Sasaki et al. (1993). Water

layers in a somewhat ice-like structured (or “glassy” (Lombardo
et al., 2009)) state qualify as “liquid crystals". The latter term re-
fers to matter which is right in between the long-range positional
and orientational order found in solids and the long-range disorder
found in liquids. The creep phenomena in liquid crystal systems
have been extensively studied also beyond the presence of water,
e.g. for polymers (Berghausen et al., 1997; Brostow et al., 1999;
Colby et al., 2001) or ferroelectrics (Jezewski et al., 2008). More
specifically, the intimate bounding of water molecules to electri-
cally charged solid surfaces as well as the “lubricant effect” of the
fluid once the solid surfaces start to glide along thewater sheets are
thought of as the origins of the creep process, as is supported by
various experimental and computational chemistry studies
(Alizadeh et al., 2010; Kalinichev et al., 2007; Vlahini�c et al., 2012;
Manzano et al., 2012). What is somehow lacking in this respect, is
the explicit mathematical consideration of how the lubrication ef-
fect of water on 2D interfaces results in creep properties of a bulk of
material hosting such surfaces. As a contribution to this somehow
open problem, the present paper describes a micromechanical
frameworkwhich allows for translation of creep laws for interfaces,
into the resulting creep laws at the continuum scale of materials
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Nomenclature

a radius of an oblate spheroid
A

i
fourth-order strain concentration tensor of oblate

inclusion phase
A

s
fourth-order strain concentration tensor of solid

A N

i
fourth-order strain concentration tensor of oblate

inclusion phase in Eshelby-type matrix-inclusion
problem

A lim

i
limit of A

i
for flat interfaces

A lim
i

third-order strain concentration tensor describing the

influence of macroscopic strain on the average
displacement jump of flat interfaces

A S;lim
i

third-order strain concentration tensor describing the

influence of macroscopic stress on the average
displacement jump of flat interfaces

Alim
i;jkm jkm e th component of A lim

i
; j, k, m ˛ {x, y, z}

AS;lim
i;jkm jkm e th component of A S;lim

i
; j, k, m ˛ {x, y, z}

B lim
i

third-order influence tensor describing the influence

of interfacial eigentractions of flat interfaces on the
macroscopic stress

B S;lim
i

third-order influence tensor describing the influence

of interfacial eigentractions on the macroscopic strain

Blimi;jkm jkm e th component of B lim
i

; j, k, m ˛ {x, y, z}

BS;limi;jkm jkm eth component of B S;lim
i

; j, k, m ˛ {x, y, z}

c half opening of an oblate spheroid
C

i
fourth-order stiffness tensor of oblate inclusion phase

C
s

fourth-order stiffness tensor of solid

C
hom

fourth-order homogenized stiffness tensor

C lim

hom
limit case of C

hom
for flat interfaces

ðC lim

hom
Þ�1 inverse of C lim

hom
, i.e. homogenized compliance tensor

for flat interfaces
d interface density parameter
dr differential of r
du differential of u
dU differential volume
D

ii
fourth-order influence tensor describing the influence

of eigenstresses in oblate inclusion phase on its total
strains

D lim

ii
fourth-order limit of D

ii
for flat interfaces

Dlim
ii second-order influence tensor describing the influence

of interfacial eigentraction on the average
displacement jump

DS;lim
ii second-order influence tensor describing the influence

of interfacial eigentraction on the average
displacement jump

D
si

fourth-order influence tensor describing the influence

of eigenstresses in oblate inclusion phase on the total
solid phase strains

Dlim
ii;jkmn jkmn e th component of D lim

ii
; j; k;m;n˛fx; y; zg

Dlim
ii;jk jk e th component of Dlim

ii ; j; k˛fx; y; zg

DS;lim
ii;jk jk e th component of DS;lim

ii ; j; k˛fx; y; zg
ex; ey; ez unit base vectors of Cartesian coordinate system
E macroscopic strain tensor
E
N

remote strain tensor of Eshelby-type matrix-inclusion
problem

EI E in first load case
EII E in second load case
Es Young’s modulus of the solid phase
Ejk jk e th component of E; j; k˛fa; x; y; zg
E0az initial macroscopic shear strains in a creep experiment
DENaz asymptotically reached increment of creeping shear

strains
fi volume fraction of inclusion phase
fs volume fraction of solid phase
i index for inclusion and interface phases
I symmetric fourth-order identity tensor

I
dev

deviatoric part of I

I
vol

volumetric part of I

1 second-order identity tensor
j index j ˛ {x, y, z}
J fourth-order creep tensor

Jijkl ijkl e th components of J
k index k ˛ {x, y, z}
ks bulk modulus of solid phase
[ characteristic size of RVE
m index m ˛ {x, y, z}
n index n ˛ {x, y, z}
N number of interfaces inside the RVE, making up the

interface phase
P fourth-order Hill tensor, accounting for inclusion shape

P
i

fourth-order Hill tensor of oblate inclusion phase

r radial coordinate of a cylindrical coordinate system
RVE Representative Volume Element
R fourth-order relaxation tensor

Rijkl ijkl e th components of R
s index for solid phase
S

i
fourth-order Eshelby tensor of oblate inclusion phase

Si,jkmn jkmn e th component of S
i
; j, k, m, n ˛ {x, y, z}

T
i

fourth-order morphology tensor for flat inclusions;

abbreviation for limu/0 u A N

i
Ti,jkmn jkmn e th component of T

i
; j, k, m, n ˛ {x, y, z}

TE
i viscous eigentraction vector of interface phase

TE
i;j j-th component of TE

i ; j ˛ {a, z}

u integration variable
x, y, z Cartesian coordinates
x position vector
xþ position vector labeling geometrical points at upper

boundary of the spheroidal oblate inclusion
x� position vector labeling geometrical points at lower

boundary of the spheroidal oblate inclusion
z(r) half opening of an oblate spheroid, measured relative

to the midplane of the oblate spheroid, at a distance r
from the center on the long axis (z(0) ¼ c)

a index a ˛ {x, y}
d Kronecker delta
3 microscopic strain tensor
3i average strains of the oblate inclusion phase
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