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a b s t r a c t

Three-dimensional (3D), lattice-based micro- and nano-architected materials can possess desirable
mechanical properties that are unattainable by homogeneous materials. Manufacturing these so-called
structural metamaterials at the nano- and microscales typically results in non-slender architectures (e.g.,
strutswith a high radius-to-length ratio r/l), forwhich simple analytical and computational tools are inap-
plicable since they fail to capture the effects of nodes at strut junctions. We report a detailed analysis that
quantifies the effect of nodes on the effective Young’s modulus (E∗) of lattice architectures with different
unit cell geometries through (i) simple analytical constructions, (ii) reduced-order computationalmodels,
and (iii) experiments at the milli- and micrometer scales. The computational models of variable-node
lattice architectures match the effective stiffness obtained from experiments and incur computational
cost that are three orders-of-magnitude lower than alternative, conventional methods. We highlight a
difference in the contribution of nodes to rigid versus non-rigid architectures and propose an extension
to the classical stiffness scaling laws of the form E∗

∝ C1(r/l)α + C2(r/l)β , which holds for slender and
non-slender beam-based architectures, where constants C1 and C2 change with lattice geometry. We find
the optimal scaling exponents for rigid architectures to be α = 2 and β = 4, and α = 4 and β = 6 for
non-rigid architectures. These analytical, computational, and experimental results quantify the specific
contribution of nodes to the effective stiffness of beam-based architectures and highlight the necessity of
incorporating their effects into calculations of the structural stiffness. This work provides new, efficient
tools that accurately capture the mechanics and physics of strut junctions in 3D beam-based architected
materials.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Architecting structural metamaterials at the micro- and
nanoscales has enabled the attainment of novel mechanical prop-
erty combinations that are inaccessible to homogeneousmaterials.
For example, decoupling high stiffness and high strength from
density [1–7], eliciting a phononic bandgap response [8], and twist-
to-compression coupling [9] have been made possible due to the
use of architecture. Besides unveiling interestingmaterial behavior
at the nanoscale, these types of structural metamaterials exploit a
careful structural design to achieve their unique properties [5,10–
12]. For instance, optimization of structural elements has enabled
the fabrication of multistable structures for strain energy storage
[13–15] as well as large-deformation energy absorption [16–18].
Benefits of architecture have also been exploited at larger scales
than the ones described above, such as in centimeter-scalemetallic
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and composite sandwich plates with truss architectures instead of
metallic foams or corrugations, where the architected core elicits
superior performance [19,20]. Due to their high mechanical tun-
ability, architected structuralmaterials are sometimes subjected to
unusual loading conditions such as in cell scaffolds [21,22], truss-
based micro-battery lithiation [23], and impact environments
[16,24,25], all of which demand developing a full understanding
of the mechanical properties at each relevant length scale. Several
works have contributed to this understanding by exploring the
mechanical parameter spaces of some architected materials [2,4–
6,26], which successfully linked their high stiffness, strength, and
resilience to the underlying structural hierarchy and shell-based
geometries. However, substantial unattained properties still re-
mainwithin those parametermaps and fewoverarching guidelines
have been developed to accurately characterize architected mate-
rials across scales and structural parameters. This understanding
of the micro-architecture across wider parameter spaces is crucial
to enabling materials by design.

Recent developments in the field of architected materials in-
clude the fabrication ofmillimeter- to centimeter-scale volumes of
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material while maintaining nano- and microscale feature resolu-
tion [27]. Several earlier works exposed unique properties enabled
by the material–structure interaction at these scales [2–5,11] but
were limited to relatively small tessellations of periodic architec-
tures to result in small sample dimensions. The new opportunity
of fabricating much larger tessellations enables designing such
metamaterials for structural applications, which demand effective
analytical and computational tools to predict a given structural
member’s mechanical properties and response to prescribed load-
ing.

An extensive experimental and theoretical body of literature
has explored the effective, macroscale properties of lattice archi-
tectures, which has laid the basis for analytical predictive tools
[28–33]. For example, using beam theory, the classical stiffness
and strength scaling laws by Gibson and Ashby [34] have related
a cellular solid’s effective Young’s modulus (E∗) and strength (σ ∗

y )
to its relative density (ρ̄):
E∗

Es
= C ρ̄ξ , (1)

σ ∗
y

σys
= Dρ̄η, (2)

where Es is the constituent material’s Young’s modulus, σys is the
constituent material’s yield or failure strength, C and D are pro-
portionality constants, and ξ and η are the scaling exponents. The
proportionality constants C and D as well as the scaling exponents
ξ and η vary with the type of architecture.

Lattice architectures can be broadly characterized based on
their rigidity, which directly determines the scaling exponents. A
necessary but not sufficient condition for rigidity is provided by
Maxwell’s condition for pin-jointed structures [35], which is based
on the connectivity of a given structure, i.e., the number of bars and
joints that form the structure. It states that a three-dimensional
structure with b bars and j joints is rigid if b − 3j + 6 = 0. A
more complete analysis requires assembling the equilibrium ma-
trix for a given unit cell and analyzing its fundamental subspaces
to determine the number of states of self-stress s and zero-energy
mechanisms m, as shown by Pellegrino and Calladine [36]. The
existence or lack of a zero-energy mechanism classifies a structure
as rigid (m = 0), non-rigid (m > 0) [37], or as periodically rigid
(m = 0 when periodic boundary conditions are applied to the unit
cell). Rigid architectures possess stretching-dominated behavior
while non-rigid ones predominantly undergo bending-dominated
deformation, but may also exhibit stretching-dominated behavior
in some loading directions due to anisotropy (e.g., simple-cubic
lattice). Assuming rigid structures are probed in a stretching-
dominated direction and non-rigid ones in a bending-dominated
direction, beam theory predicts ξ = 1 and ξ = 2 in Eq. (1),
respectively.

Some works have experimentally demonstrated these classical
stiffness scalings [2,11], while others have reported experimen-
tal and computational stiffness scalings that differ from these
beam-theory predictions [1,3,11,16,32]. The non-slender beams
that comprise some of the cellular architectures probed experi-
mentally may explain the observed deviations from the classical
models, since beam theory does not offer a suitable approximation
for those structures. In fact, the computational studies of Meza
et al. [38] confirmed, for specific lattice architectures, that the
classical predictions apply if the struts are slender, i.e., (r/l) ≲
0.05, and that a transition to a different scaling is observed as
the struts become non-slender. Without quantification, that work
identified the nodes as the main cause for the deviation from
classical scaling. Lattice architectures in many small-scale exper-
imental studies have beam dimensions that render the beam-
theory approximation inapplicable. For instance, slender solid-
beam lattices, (i.e., ones with (r/l) ≲ 0.05) are challenging to

fabricate at the nano- to microscales due to fabrication constraints
[38]. This implies that the deviation from the classical scaling and
the absence of a global scaling law pose a challenge for designing
these types of architected materials. This geometrical regime, at
which the existing theoretical tools cannot capture the mechanics
of lattice architectures, drives the need for developing advanced
theories and numerical tools.

Effective and efficient numerical tools have become increas-
ingly important as the limits of analytical prediction tools have
been approached. For example, discrete beam element [39,40]
and beam homogenization models [41–46] are effective only for
slender-strut architectures and are not capable of capturing the
physics of complex, non-slender architectures such as the thin-
walled, hollow-tube ceramic lattices of Meza et al. [11] or the
metallic lattices of Schaedler et al. [1]. Alternative models, such
as full-scale 3D finite element (FE) models, accurately capture the
physics of lattice architectures but pose additional challenges due
to high computational costs. Applying periodic boundary condi-
tions to a unit cell has beenwidely utilized as an effective approach
to reduce the computational cost of these models [26,38], but it
is inadequate when predicting the behavior of finite tessellations
due to boundary effects or non-infinite boundary conditions [32].
Alternatively, the full tessellation can be modeled, which retains
the full detail of the architecture and the boundary conditions but
requires a large amount of computational resources [16,17].

Here, we present a comprehensive study that investigates and
quantifies the effect of node geometry on the stiffness scaling of
non-slender lattice architectures using (i) simple theoretical ap-
proximations for nodes, (ii) reduced-order computational models
where full detail at the nodes is retained, and (iii) experiments at
the milli- and micrometer scales with varying node geometries.
We discover that the nodes in non-rigid architectures have greater
contribution to stiffness than those in rigid ones, determined by
efficient reduced-ordermodels and experiments atmultiple length
scales, and predicted by simple theoretical constructions. We
demonstrate that the reduced-order models provide an efficient
alternative to obtain stiffness properties of full lattice tessellations,
to within a few percent error compared to full-resolution models
with up to three orders-of-magnitude reduction in computational
cost.We propose an extension to the classical stiffness scaling laws
that enables them to effectively describe the scaling of both slender
and non-slender lattice architectures and account for the effects of
nodes and their geometry.

2. Theory

We begin with simple, representative 2D beam-element net-
works of rigid and non-rigid geometries to provide intuition on
their stiffness scaling as a function of beam slenderness. Using lin-
ear two-node Euler–Bernoulli beam elements with circular cross-
sections (radius r , modulus E, and length l), we define the beam
slenderness as the radius-to-length (r/l) ratio. To account for the
effect of the nodes, i.e., the beam junctions, we utilize variable-
stiffness rotational springs at junctions in addition to beam ele-
ments. With at most two beam elements connected at a given
junction in the model, each junction has two translational and two
rotational degrees of freedom, the latter of which are coupled by a
rotational springwith stiffness kθ (Fig. 1(a)). The total strain energy
density of a structure with nb beams and nθ rotational springs
assembled in this manner takes the form

Wtot =

nb∑
i=1

W i
b +

nθ∑
j=1

W j
θ , (3)

where W i
b and W j

θ are the energy densities of the ith linear Euler–
Bernoulli beam and the jth rotational spring, respectively. The
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