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a b s t r a c t

Curvaturemediated elastic interactions between inclusions in lipidmembranes have been analyzed using
both theoretical and computational methods. Entropic corrections to these interactions have also been
studied. Here we show that elastic and entropic forces between inclusions in membranes can compete
under certain conditions to a yield a maximum in the free energy at a critical separation. If the distance
between the inclusions is less than this critical separation then entropic interactions dominate and there
is an attractive force between them, while if the distance is more than the critical separation then elastic
interactions dominate and there is a repulsive force between them. We assume the inclusions to be rigid
and use a previously developed semi-analytic method based on Gaussian integrals to compute the free
energy of amembranewith inclusions.We show that the critical separation between inclusions decreases
with increasing bending modulus and with increasing tension. We also compute the projected area of a
membranewith rigid inclusions under tension and find that the trend of the effective bendingmodulus as
a function of area fraction occupied by inclusions is in agreement with earlier results. Our technique can
be extended to account for entropic effects in other methods which rely on quadratic energies to study
the interactions of inclusions in membranes.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In mechanics, the forces of interaction between defects in an
elastic body are well understood. For example, two screw dislo-
cations with Burger’s vectors b and b′ at a distance r from each
other interact with a force per unit length f of magnitude f =

µbb′/(2πr)whereµ is the shearmodulus of the solid. This interac-
tion force arises because the defects produce elastic fields around
themwhich can overlap. The interaction between the defects could
be attractive or repulsive depending on whether the total elastic
energy of the solid decreases or increases due to the overlapping
of stress and strain fields produced by the defects [1]. Interactions
between defects in an elastic solid can also arise due to entropic
effects. For example, the equilibrium concentration of vacancies in
a solid is a result of the competition between the elastic energy
and the entropy of the vacancies. The elastic part of the free energy
of the solid, Uel, increases if the vacancy concentration increases
because the vacancies create elastic fields around them that store
energy. On the other hand, the entropic part of the free energy of
the solid Uen = −TS ≈ −T (c log c+ (1− c) log(1− c)) decreases as
the vacancy concentration c increases, for c ≪ 1. This competition
gives rise to a non-zero vacancy concentration at which the free
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energy is a minimum [2]. In a similar vein, the chemical force
on a dislocation has its origins in the entropy of vacancies [1].
The physics of elastic and entropic interactions described above
is applicable to any kind of defect of in an elastic material. Since
lipid membranes can be modeled as elastic continua we will apply
concepts similar to those described above to inclusions, such as
proteins, in them.

If two similar proteins bind to a lipid bilayer separated by a
distance r then the elastic deformation field around one of them
can produce a repulsive force on the other one [3]. The potential of
this force decays as 1/r4 as has been deduced from studies of pro-
teins interacting through elastic deformations of a lipid bilayer [4–
10]. Lipid membranes also fluctuate due to Brownian motion.
This results in an attractive entropic force between two similar
proteins [4,6]. The competition between attractive and repulsive
forces can lead to self-assembly of proteins on a lipid bilayer
membrane [11,12]. This sort of self-assembly determines the shape
of a cell membrane and plays a role in endo- and exo-cytosis by
the formation of localized invaginations or buds. Bud formation is
exactlywhat happenswhen capsid proteins of viruses, like HIV and
influenza, land on lipid membranes and self-assemble [4]. Simi-
larly, the protein endophilin clusters together on lipid membranes
and causes the formation of cylindrical tubules, and thus, it plays a
role in membrane trafficking events in a cell [13]. The early stages
of self-assembly of certain amyloid forming proteins (which cause
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Fig. 1. (a) Equilateral triangle element discretization scheme of a square membrane. The inclusions are represented by red hexagons consisting of many triangle elements.
We keep the element size fixed, so the number of triangle elements in an inclusion depends on the size of the inclusion. (b) The equilibrium shape of a membrane with two
proteins embedded in it and separated by a distance1r . The proteins are rigid cylinders which enforce contact anglesψA andψB with respect to the adjacent membrane. In
section 3.1, we will fix these angles to a given value as an enforced boundary condition. (c) Unit normal vectors n̂i and n̂j of two elements sharing one inclusion–membrane
boundary edge. lij is the reference length between the center of these two triangle elements. The red triangle belongs to the inclusion. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Alzheimer’s and Parkinson’s diseases) also involves self-assembly
of monomers on a lipid membrane [14]. Since self-assembly often
involves many more than two proteins, the interactions between
many proteins on a membrane have been studied and it has been
learned that pair-wise expressions are not sufficient to describe
these many body interactions [5]. However, most analytic studies
of these many body interactions account for membrane bending
deformations only. The entropic component of the interactions has
been studied recently using simulations and a sophisticated field
theory [6,7]. The field theory relies on the idea that the height
fluctuations of themembrane are small, so the bending energy can
bewritten as a quadratic form. This leads toGaussian path integrals
that can be evaluated analytically, but not without difficulty [6].

Our overarching goal here is to study elastic and entropic forces
between many inclusions on lipid membranes using computa-
tional methods based on Gaussian integrals. Although mechani-
cal and thermodynamic properties of lipid membranes, including
how inclusions (such as, proteins) effect the overall membrane
behavior, have been quantitatively studied using experimental,
theoretical and computational methods [15–22], it is not always
possible to design an experiment for large scale problems involving
membrane protein interactions; on the other hand, the sample
scale is too large for molecular simulations. To overcome these
difficulties, researchers have turned to continuum modeling and
associated computational methods [23] to study large scale (more
than several microns) problems involving protein interactions on
membranes. Unlike molecular simulation (such as, Monte Carlo
and Molecular Dynamics based studies [21,22]) these continuum
methods do not include Brownian fluctuations. Our technique
described below can potentially be combined with continuum
computationalmethods to account for entropic effects arising from
Brownian fluctuations.

2. Theory

2.1. Semi-analytic method to compute membrane free energy

The thermodynamic properties of a fluctuating lipidmembrane
have been studied by starting from an energy expression [24,25]:
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Here, L is the side of a square membrane, Kb is the bending modu-
lus, and F is the externally applied isotropic tension. The variable
w(x, y) in the expression above is the out-plane deflection of the
neutral plane. We assume that the deformation is relatively small
such that there are no overhangs in the membrane, and thus the

displacement of each point is written as a function of the in-plane
coordinate (x, y). We discretize the membrane into approximately
Q = 4N2/

√
3 equilateral triangle elements of side l as shown in

Fig. 1(a) (so thatN = L/l), similar tomanyMonte Carlo simulations
on other fluid and solid membranes [26,27]. But, in contrast to the
Monte Carlo simulations we will compute the partition function
analytically. The key idea is to express the membrane energy
quadratically as a function of approximately P ≈ 2N(N + 1)/

√
3

node variables wi, i = 1..P as in [24,25]:
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Here the summation in the bending energy term runs over all the
adjacent triangle element pairs that share one edge linked bynodes
i, j, with k, l, being the other two nodes of these two elements.
The summation in the potential energy of the tension F runs over
all the triangle elements. The subscripts r, s, t denote the nodes
of one triangle in the second sum. Ae = L2/Q is the reference
area of one triangle. Since the energy expression is quadratic, we
can define a stiffness matrix M such that E = wMwT, where the
vector w = [w1, w2, . . . , wP ] contains all the node displacements.
Recall that M is a function of Kb, F , L, l. In statistical mechanics,
1
Z exp (−E/kBT ) is the probability of finding a system in a given
state of energy E, where kB is the Boltzmann constant, T is the
absolute temperature and Z is the partition function. Next, we
are going to compute the partition function Z by carrying out the
integration of exp (−E/kBT ) over all possible states of the system
as in [28–31]. The partition function Z scales inversely with the
square root of the determinant ofM, as

Z =

√
(2πkBT )P

detM
. (3)

The Gibbs free energy G(F , T ) of the membrane is related to the
partition function Z as G = −kBT ln Z , and hence the projected
area, entropy and other thermal quantities can be computed by dif-
ferentiating G(F , T ). We computed the projected area and entropy
of the membrane as a function of T , Kb and F using the method
above in [24] and recovered results from well-known analytic
expressions for the projected area [18] and entropy in the limit as l
became small. For L = 1 µm and 0.01 pN/nm ≤ F ≤ 1 pN/nm,
l = 2.5 nm resulted in excellent agreement with the known
analytic formula for projected area and entropy. Thus, we have
the capability to capture elastic and entropic effects in fluctuating
membranes.
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