
Extreme Mechanics Letters 18 (2018) 58–69

Contents lists available at ScienceDirect

Extreme Mechanics Letters

journal homepage: www.elsevier.com/locate/eml

A computational study of the mechanisms of growth-driven folding
patterns on shells, with application to the developing brain
S.N. Verner a, K. Garikipati b,*
a Department of Mechanical Engineering, University of Michigan, United States
b Departments of Mechanical Engineering and Mathematics, University of Michigan, United States

g r a p h i c a l a b s t r a c t

a r t i c l e i n f o

Article history:
Received 1 September 2017
Received in revised form 7 November 2017
Accepted 7 November 2017
Available online 16 November 2017

Keywords:
Morphology
Patterning
Cortical folding
Elasticity
Bifurcation

a b s t r a c t

We consider the mechanisms by which folds, or sulci (troughs) and gyri (crests), develop in the brain.
This feature, common to many gyrencephalic species including humans, has attracted recent attention
from soft matter physicists. It occurs due to inhomogeneous, and predominantly tangential, growth of
the cortex, which causes circumferential compression, leading to a bifurcation of the solution path to a
folded configuration. The problem can be framed as one of buckling in the regime of linearized elasticity.
However, the brain is a very soft solid, which is subject to large strains due to inhomogeneous growth. As a
consequence, the morphomechanics of the developing brain demonstrates an extensive post-bifurcation
regime. Nonlinear elasticity studies of growth-driven brain folding have established the conditions nec-
essary for the onset of folding, and for its progression to configurations broadly resembling gyrencephalic
brains. The reference, unfolded, configurations in these treatments have a high degree of symmetry—
typically, ellipsoidal. Depending on the boundary conditions, the folded configurations have symmetric
or anti-symmetric patterns. However, these configurations do not approximate the actual morphology of,
e.g., human brains, which display unsymmetric folding. More importantly, from a neurodevelopmental
standpoint, many of the unsymmetric sulci and gyri are notably robust in their locations. Here, we initiate
studies on the physical mechanisms and geometry that control the development of primary sulci and
gyri. In this preliminary communication we carry out computations with idealized geometries, boundary
conditions and parameters, seeking a pattern resembling one of the first folds to form: the Central Sulcus.
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1. Introduction

Folding, or sulcification and gyrification, of the brain is com-
mon in mammals including primates, cetaceans, pachyderms and
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ungulates. Folds form in the cortical layer of gray matter, and
in species such as humans that demonstrate pronounced gyren-
cephaly, the sulci can be significantly deeper than the cortical
thickness. From a neurophysiological point of view, a folded cor-
tex confers a cognitive advantage by increasing the surface area
enclosedwithin the skull, translating to greater capacity for intelli-
gence. Human brains in a nonpathological state have a gyrification
index (ratio of actual surface area to the surface area of an envelop-
ing surface) approaching 2.55 [1]. Neurodevelopmental patholo-
gies are associated with significant departures from this value.
In humans, polymicrogyria (shallow, more frequent folding) is
associatedwith developmental delays and epilepsy [2]. Pachygyria
(shallow, less frequent and flatter folds) can cause seizures, mental
retardation and in rare cases, mania [3]. Lissencephaly (absence of
folds) is linked to abnormal EEG patterns, mental retardation and
agitation, and manifests in under-developed social skills [4].

Fetal MRI data indicate that the human brain is almost perfectly
smooth until 24 weeks of gestation [5–7], from which stage gyri-
fication proceeds until well after birth. Therefore, there is a clear
neurophysiological motivation to understand the physics govern-
ing cortical folding and the conditions for normal or pathological
cortical folding.

There have been competing hypotheses for this phenomenon.
Most prominent have been (a) the axonal tensionmodel of cortical
folding under forces imposed by interconnected neurons [8]—a
theory in turn challenged by (b) the principle of inhomogeneous
growth of the cortical layer in which circumferential compression
due to growth causes an elastic buckling bifurcation, and extreme
strains lead to highly folded structures in the post-bifurcation
regime. Studies of cutting followed by elastic relaxation on ferret
brains established that axonal tension does not cause folding,while
computational studies strongly suggested that inhomogeneous
growth does [9]. Bayly et al. [10] explained gyrification patterns
by analytic and computational studies based on inhomogeneous
growth, and Tallinen et al. [11] used experiments in a surrogate,
polymeric gelmodel combinedwith nonlinear finite element com-
putations to further support the inhomogeneous growth theory.1

Mismatched elastic moduli between a thin elastic layer and an
underlying substrate are common inmany non-biological thin film
applications [12]. Such stiffness contrast also is a feature that may
control the patterns of wrinkling of fruit and vegetable skins [13].
However, it is not essential to brain folding [14–16]; the Young’s
Modulus of cortical graymatter and of thewhitematter underlying
it are of the same order of magnitude [17].

There is now a sizeable literature [10,11,17–23] seeking to
explain aspects of brain folding by inhomogeneous growth in
linearized and, more appropriately, nonlinear elasticity. Some
of this literature draws from linearized buckling of beams and
plates [21,22,24], but much of the computational work is based
on finite strains, and operates in the post-bifurcation regime. This
work has shed light on the mechanical conditions governing the
development of the organ-wide pathologies of polymicrogyria,
pachygyria and lissencephaly [19–21]. However, the precise form
of the folded cortex is important beyond its implications for these
pathologies. In humans and other gyrencephalic species, the nor-
mally developed brain does not fold into perfectly symmetric or
antisymmetric mode shapes that may be expected from elastic
buckling and post-bifurcation straining on reference configura-
tions of high symmetry. Primary sulci and gyri – the early forming,
prominent folds – are not localized into either symmetric or anti-
symmetric modes of folding [5,25]. Studies of the sequence of
normal formation of primary sulci and gyri, however, are currently
lacking.

1 Albeit, solved as elastic unloading from the folded configuration with first-
order dynamics added to numerically stabilize the system against bifurcations.

Here, we initiate studies on the geometry and physical mech-
anisms that, governed by the phenomenology of inhomogeneous
growth, lead to primary sulci and gyri in the normally developed
human brain. In this first communication, we vary (a) geometries
guided by quantitative data from anatomical measurements, (b)
mechanisms of cell accumulation by local proliferation, and by
migration, and (c) thickness of the cortical layer. Our goal is to
reproduce a pattern that suggests the incipient Central Sulcus
(Fig. 1a). Apart from its location, which is roughly in the coronal
plane, and its orientation, which is close to vertical, this target is
recognized qualitatively rather than quantitatively in this prelim-
inary computational study. We exploit the smoothness of the 24
week-old fetal brain [5–7], a convenient reference configuration,
relative to which we consider growth.

Most previous studies have reduced the problem to one of lo-
cal, inhomogeneous growth controlled by a time- or load-dependent
scalar parameter [10,11,17–20,23]. Effectively, this addresses only
the mechanism of local cell proliferation. In contrast, we also pay
attention to the developmental processes by which neurons arise near
the ventricles and migrate outward to the cortex [26,27]. There, they
intercalate circumferentially, causing tangential growth [28] in the
two-dimensional surfacemanifold that is the cortical layer.We use the
advection–diffusion–reaction equation to model cell migration and
proliferation, and couple it to a local model of tangential growth.

Our treatment beginswith the governing and constitutive equa-
tions in Section 2. The computational framework is briefly pre-
sented in Section 3, followed by studies of the effects of: geometry
(Section 4), mechanisms of cell migration (Section 5) and cortical
thickness (Section 6). The role that energy variations play in the de-
velopment of bifurcations is studied in Section 7. Closing remarks
appear in Section 8.

2. Model and governing equations

We adopt the classical formulation of continuum mechanics.
The reference configuration representing the smooth, fetal brain is
denoted by Ω0. Reference positions of material points are vectors
X ∈ Ω0 ⊂ R3, and the displacement field vector is u ∈ R3. Points
in the deformed (and grown) configuration, Ω , are labeled x =

ϕ(X) = X +u. The deformation gradient tensor is F = 1+ ∂u/∂X ,
where 1 is the second-order isotropic tensor. Fig. 1b illustrates
these kinematics and a few other key aspects of the treatment.
Inhomogeneous growth is modeled by the multiplicative, elasto-
growth decomposition F = F eF g. Denoting the cell concentration
inΩ by c , tangential growth in the cortical layer is written as

F g(c(ϕ(X))) =

{ 1
2 − f (c)

(1 − (f (c) − 1)N ⊗ N) , X ∈ cortical layer

1, X ̸∈ cortical layer
(1a)

f (c) =

{
1, c ≤ ccr
c
ccr
, c > ccr (1b)

with N representing the surface normal on ∂Ω0. The form of F g

in Eq. (1a) ensures that cell intercalation-driven growthoccurs only
in the cortex, andwithin the cortical tangent plane. The formof f (c)
in Eq. (1b) ensures that tangential expansion occurs only after the
cell concentration in the cortex has exceeded the threshold of ccr,
thusmodeling the effect of free volume.Weuse ccr(x) = c(ϕ(X), 0),
the initial concentration.

We consider hemispherical and hemi-ellipsoidal reference con-
figurations,Ω0, with cortical layers of varying thicknesses, forming
thin shells of gray matter resting on elastic foundations of white
matter in each case. The white matter is itself a thick shell with
the inner surface, ∂Ω i representing the ventricles (Fig. 1c). Since
the time scales of growth are much greater than the intrinsic
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