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a b s t r a c t

Following depletion of oil and gas reservoirs with soft rocks, serious wellbore damage and a large amount
of sand production result from the development of extremely large plastic deformation aroundwellbores.
Evaluation on the development of plastic strain is crucial towellbore instability analysis and sand produc-
tion forecasting. Cap plasticitymodels have been developed to capture both shear and compaction failures
for geomaterials. However, it has been a great challenge in accurately identifying extremely large plastic
deformation around wellbores in reservoirs with soft formations using cap plasticity model coupled with
fluid flow. To tackle this challenge, we have developed a fully implicit and fully coupled geomechanics and
fluid flow finite element codewhere the Pelessone smooth cap plasticitymodel is consistently formulated
for finite plastic deformation. In this work, with this robust and accurate computer code, we successfully
investigate a detailed evolution of plastic strain up to its extreme condition around and across multiple
horizontal wellbores following reservoir pore pressure drawdown.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

A large number of oil and gas reservoirs embodies geologically
young and poorly consolidated geomaterials with high porosity.
For these reservoirs with soft formations, serious issues in terms
of wellbore instability, sand production, and ground surface subsi-
dence resulting from reservoir depletion have beenmajor concerns
in petroleum industrials and environmental agencies. For example,
more than 1000 production wells in the Belridge oil and gas field
reservoirs with high porosity diatomite rocks in California [1] and
more than 90 wells in chalk reservoirs in the North Sea experi-
enced severe borehole damage and casing failure resulting from
depletion-induced compaction of soft formations. On the other
hand, ground surfaces over these reservoirs subsided more than
30 ft. These subsidence issues have been negatively impacting
environments and offshore platform operations. Understanding
the mechanism of formation failures, developing mathematical
and physical models, and predicting reservoir physical events are
crucial for wellbore instability analysis and sand production man-
agement for reservoirs with soft formations.

Traditional shear-dominated failure models such as the
Drucker–Prager plasticity model [2] are not able to predict the
failure due to compaction of geomaterials. The mechanism of
compaction failure is based on the collapse of rock pores from the
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micromechanical point of view. To capture such a compaction fail-
ure mode, a cap plasticity model [3] was developed by introducing
a cap to enclose an opened cone-like yield surface of the Drucker–
Prager plasticitymodel. This cap plasticity yield surface has a sharp
corner point that may bring a difficulty for numerical modeling
with regard to convergence issues. To avoid these issues, a few
mathematically more robust cap models with smooth transition
between shear surface and compaction surface were proposed
by [4–9] for geomaterials, concretes, and metal powders. To cap-
ture both dilatant and compaction failure modes, various smooth
cap models were calibrated through laboratory experiments for
various rock formations with high porosity [10,11].

Due to complexity of cap plasticity models, numerical methods
must be adopted to solve cap plasticity problems numerically for
practical applications. For pure solid materials, Sander et al. [3],
Hofstetter et al. [12], and Simo et al. [13] presented implicit fi-
nite element formulations for solving non-smooth cap models.
A few implicit and consistently formulated material integrators
for smooth cap models were derived in [14–18] for geomaterials
undergoing small plastic deformation. Hartmann [9] derived a con-
sistent finite element formulation for metal powders undergoing
finite plasticity. For coupled geomechanics with fluid flow, Borja
et al. [19] extended a consistent finite element formulation for
cam-clay plasticity model for small deformation to finite strain
cases. The essence of these numerical formulations is to con-
sistently construct material integrators which enforce the exact
condition of stresses on yielding surfaces, update stresses, and
provide algorithmic tangent modulus for global Newton–Raphson
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iterations.With consistently constructedmaterial integrators, high
fidelity simulations with quadratic convergent rates in nonlinear
iterations are highly expected for these formulations in solving
practical plasticity problems.

The objective of this work is to numerically study the evolu-
tional profile of extremely large plastic strains developed across
multiple horizontal wellbores following the depletion of reservoirs
with soft formations. Identification of such an evolutional profile of
plastic strain is very important to understand how formation fails
across multiple wellbores. The distinctive feature of this work is to
perform complex multiple wellbore analysis in a fully coupled and
fully implicit computational framework consistently formulated
for finite cap plasticity. The ability of cap plasticity models at
predicting large subsidence of reservoirs in the North Sea up to
30 ft was demonstrated in [20] where only a pure solid equation
was solved without considering wells and fluid flow. An elegant
and rigorous consistent material integrator was formulated for the
Pelessone smooth cap model by [16] for pure solid field with small
deformation but only simple problems were tested and reported.
While plastic strains around a single wellbore was studied using
a smooth cap plasticity model formulated in finite hyperelasto-
plasticity framework by [21], only pure solid field equation was
solved and maximum volume plastic strain was only in the level
of three percentage. A strip footing problem with punching load-
ing was solved in a fully coupled geomechanics and fluid flow
framework using cap plasticity model by [22]. In [22], to achieve
convergent solutions a semi-implicit formulation was adopted for
material integrators for cap models to avoid numerical instability.
However, stresses from semi-implicit formulations are not in exact
stress spaces and solutions may have large errors for long term
predictions. For reservoir problems, geomechanical solutions are
sensitive to fluid flow around boreholes. Furthermore, unlike a
single wellbore drilled in a large pay zone, the evolution of pore
pressures acrossmultiple boreholes is very complex, which greatly
affects the development of plastic strain in solid skeletons near
boreholes. In this paper, we developed a fully coupled geomechan-
ics and fluid flow computational frameworkwherewe consistently
constructed a material integrator based on the Pelessone smooth
cap model and consistently linearized coupled solid and fluid flow
equations for finite plastic deformation.With this fully coupled and
fully implicit code, we are able to accurately identify the evolution
of plastic strain across multiple horizontal wellbores following the
drawdown of reservoir pore pressure.

We outline the remaining sections of this paper as follows. In
Section 2, we present two coupled field equations based on Biot’s
consolidation theory. The Pelessone smooth cap plasticitymodel is
introduced in Section 3. We briefly summarize our finite element
formulation and nonlinear procedures for solving coupled geome-
chanics and fluid flowproblems in Section 4. In Section 5,we define
a reservoir model with multiple horizontal wellbores. Specifically,
careful enforcements on initial conditions and bore hole pressure
drawdown for models with soft formations are further addressed.
Finally, we present and discuss the predicted evolution profile
of large plastic strains across multiple wellbores following the
depletion of reservoirs. We end with conclusions.

2. Coupled geomechanics and fluid flow problems

The governing equations for coupled geomechanics and single
phase fluid flow problems are defined as follows [23–25]:{

∇ · σ (x, t) + f (x, t) = 0 (x, t) ∈ Ω × (0, ∞)

αϵ̇v(x, t) +
1

M(x, t)
ṗ(x, t) + ∇ · q(x, t) = sq(x, t) (x, t) ∈ Ω × (0, ∞) (1)

where σ , p, q, and sq are the Cauchy stress, pore pressure, flow
velocity, and fluid flow source. In Eq. (1), parameters α and M
are Biot’s constant and modulus. For solid skeleton undergoing

deformation, porosity is affected by the strain of solid skeleton.
Therefore,α andM can change following solid deformation. f in the
first equation in Eq. (1) is the body force of porousmedia defined as
f (x, t) = [(1−φ)ρs +φρf ]g where φ, ρs, ρf , and g are the porosity
of the porous medium, the density of solid skeleton, the density
of fluid, and the acceleration by gravity. Boundary conditions for
Eq. (1) are prescribed as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

u(x, t) = ū(x, t) x ∈ Γ u
× (0, ∞);

σ (x, t)n(x, t) = ts(x, t) x ∈ Γ t/w
× (0, ∞);

σ (x, t)n(x, t) = −p̄(x, t)n(x, t) x ∈ Γ w
× (0, ∞);

p(x, t) = p̄(x, t) x ∈ Γ p
× (0, ∞);

q(x, t) · n(x, t) = tq(x, t) x ∈ Γ q
× (0, ∞)

(2)

where superscripts u, t , p, q, and w on boundary Γ indicate
the boundary portions corresponding to displacement, traction,
pore pressure, fluid flux, and traction on borehole wall surfaces.
Specifically, for reservoir problems, vertical overburden is applied
in models through the second equation in Eq. (2) and controlled
borehole depletion pressure is enforced through the third and
fourth equations in Eq. (2), i.e. the pressure loading on borehole
wall surfaces for solid equation and the primary pore pressure
boundary condition for fluid flow equation. Initial conditions in
terms of total Cauchy stress and pore pressure are given below:{

σ (x, t)t=0 = σ0(x) x ∈ Ω

p(x, t)t=0 = p0(x) x ∈ Ω.
(3)

Several auxiliary equations are needed to complete Eq. (1). First,
the relation of the effective stress (σ ′′) and total stress is given
by σ ′′

= σ + αpI . Second, kinematic condition for infinitesimal
strain in solids is described as ϵ =

1
2 (∇u + ∇

Tu) where ϵ is the
total strain and notation ∇ is the gradient operator. Third, the
constitutive law for solid skeleton is governed by Hooke’s law as
σ = Ceϵe

= Ce(ϵ − ϵp) where Ce is the elasticity tensor, ϵe the
elastic strain tensor, and ϵp the plastic strain tensor. Fourth, the
rate change of plastic strain is determined by plastic potentials as
ϵ̇p

= λ ∂F
∂σ

where F is the plastic flow potential, and λ is related to
material yield condition: λ > 0 if Y = 0 and λ = 0 if Y < 0.
Finally, Darcy’s law for fluid flow in porous media is defined as
q = −

K
µ
(∇p − φρf g) where q is the velocity of fluid flow and

K is the permeability tensor of the porous medium and µ is the
viscosity of the fluid phase.

3. Cap plasticity model

Three invariants of the Cauchy stress and the deviatoric stress
are defined as I1 = trace(σ ), s = σ −

I1
3 I , J2 =

1
2 s : s, and

J3 = det(s) where I1, J2, and J3 are the first invariant of the Cauchy
stress, second and third invariants of the deviatoric Cauchy stress,
and s the deviatoric stress. In this study, we implemented the
Pelessone smooth cap model [4] with isotropic hardening models
for both shear and compaction yield surfaces. The yield function of
Pelessone’s smooth cap model is defined as follows:

Y (I1, J2, J3, σc, X) = Γ 2(β)J2 − Yc(I1, X, K (X, σc))Y 2
s (I1, σc) (4)

where Ys is a function to define the yield surface of the shear
portion as follows:

Ys(I1, σc) = σc − AY
s (e

BYs I1 − 1) − αY
s I1 (5)

where σc is the cohesive strength, αY
s is related to frictional angle

of geomaterials, and AY
s and BY

s are used to address yield surfaces
calibrated from experimental data which may deviate from linear
behaviors, and the superscript Y indicates a variable or a constant
related to yield function. Yc in Eq. (4) is an elliptic function associ-
ated with the cap portion of the yield surface and it is defined as
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