
Author's Accepted Manuscript

Effects of Silane Surface Functionalization on Interfacial Fracture Energy and Durability of Adhesive Bond Between Cement Paste and Epoxy

Jovan Tatar, Christa E. Torrence, John J. Mecholsky, Curtis R. Taylor, H.R. Hamilton

PII: S0143-7496(18)30042-3

DOI: https://doi.org/10.1016/j.ijadhadh.2018.02.009

Reference: JAAD2134

To appear in: International Journal of Adhesion and Adhesives

Received date: 19 January 2017 Accepted date: 7 February 2018

Cite this article as: Jovan Tatar, Christa E. Torrence, John J. Mecholsky, Curtis R. Taylor and H.R. Hamilton, Effects of Silane Surface Functionalization on Interfacial Fracture Energy and Durability of Adhesive Bond Between Cement Paste and Epoxy, *International Journal of Adhesion and Adhesives*, https://doi.org/10.1016/j.ijadhadh.2018.02.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1 EFFECTS OF SILANE SURFACE FUNCTIONALIZATION ON INTERFACIAL FRACTURE ENERGY AND DURABILITY OF ADHESIVE BOND BETWEEN CEMENT PASTE AND EPOXY

Jovan Tatar¹, Christa E. Torrence², John J. Mecholsky³, Jr.Curtis R. Taylor⁴, H. R. Hamilton⁵
Abstract

Epoxy adhesives are experiencing widespread use in concrete structures. However, a common concern regarding the adhesive joints in the infrastructure is their durability when exposed to harsh environments, most particularly, high levels of moisture. This work recognizes that adhesive bond between epoxy and substrate resists applied loads by a combination of chemical (hydrogen) bonds and mechanical interlock. Given the complexity of the stress-transfer mechanism this work focused exclusively on the chemical bond component between epoxy and cement paste, while the mechanical interlock was minimized through polishing of the cement paste substrate. A beam adhesion test method with notched interface was developed to assess the durability of chemical bonds between the adherents when aged by water immersion; surface functionalization of cement paste substrate was additionally explored as means of improving the chemical bonding and adhesion along the interface. Test results indicated that interfacial fracture energies were improved in both dry and conditioned groups with silane surface treatment. Analysis of interfacial failure modes with respect to the analytical crack kink criterion revealed that interphase region between epoxy and cement paste is characterized with higher fracture toughness than the cement paste substrate. The study lays groundwork for improvement in the durability of adhesive joints in related infrastructure through bottom-up interface design.

Keywords: epoxy; concrete; silane; adhesion; durability; hygrothermal.

¹ Assistant Professor, University of Louisiana at Lafayette, Department of Civil Engineering, 131 Rex Street Lafayette, LA 70503, phone: +1 337 482 1118, e-mail: jtatar@louisiana.edu

² Graduate Student, Texas A&M University, Department of Materials Science and Engineering, 503 CE Office Bldg, 3136 TAMU, College Station, TX 77843, phone: +1 352-551-5130, email: ctorrence@tamu.edu

³ Professor, University of Florida, Department of Materials Science and Engineering, 172 Weil Hall, Gainesville, FL 32611, phone: +1 352 846 3306, e-mail jmech@mse.ufl.edu

⁴ Associate Professor, University of Florida, Department of Mechanical and Aerospace Engineering, 312 Weil Hall, Gainesville, FL 32611, phone: +1 352 392 2177; e-mail: curtis.taylor@ufl.edu

⁵ Professor, University of Florida, Department of Civil and Coastal Engineering, 365 Weil Hall, Gainesville, FL 32611, phone:+1 352 392 9537 x1509, e-mail: hrh@ce.ufl.edu

Download English Version:

https://daneshyari.com/en/article/7170894

Download Persian Version:

https://daneshyari.com/article/7170894

<u>Daneshyari.com</u>