Pressurized oxy-coal mild combustion for clean-coal technology

S. Bittanti [∗] L. Calloni ∗∗ A. De Marco ∗∗∗ V. Prandoni ∗∗∗∗ F. Zamponi †

∗ Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, email: bittanti@elet.polimi.it (corresponding author) ∗∗ ERSE, Via Rubattino 54, 20134 Milano, lorenzo.calloni@erse-web.it ∗∗∗ Process Engineer, Milano, antoniodemarco65@gmail.com ∗∗∗∗ ERSE, Via Rubattino 54, 20134 Milano, valter.prandoni@erse-web.it † TTC srl, Via Bistolfi 47, 20134 Milano, fulvio.zamponi@ttc-mi.it

Abstract: In this paper we consider an oxy-coal thermoelectric plant fed by a coal-water mixture $(slurry)$ and oxygen (instead of air). The use of pure oxygen makes it easier to capture $CO₂$. A distinctive feature of such a plant is that the combustion and flue gases system operates at high pressure (about 10 bar). We develope a model based on first principles equations in order to study the startup procedures.

Keywords: Power plant; oxy-combustion; flameless combustion; startup manouvres; modeling.

1. INTRODUCTION

Accordingly to International Energy Agency, energy derived from fossil fuel usage currently accounts for approximately 81.4% of the world's energy output and 60.5% of total greenhouse gas emissions. Fossil fuel based carbon dioxide emissions in member countries of the Major Economies Forum (MEF) accounts for 78.8% of the world's emissions. It is estimated that $CO₂$ emissions will increase by 130% by 2050 in absence of new policies or supply constraints.

Currently, approximately 30% of $CO₂$ emissions come from coal fired power stations; however other industrial processes, such as gas stripping, steal making, sement production and alumina refining, account for close to 50% of $CO₂$ emission.

Therefore, resorting to coal fired plants calls for the development of technologies for the capture and sequestration of $CO₂$. Among the various technologies which have been proposed, a promising one (see Saponaro et al. (2007) and also Croiset et al. (2005)) is based on the use of pure oxygen in the combustion process. The use of pure oxygen in place of air has the advantage of avoiding the presence of huge quantities of nitrogen in the flue gases. In this way the capture of $CO₂$ is remarkably simplified.

In the plant we study the oxy-combustion takes place at high pressure (10 bar) in order to enhance the combustion quality. Furthermore the production of $CO₂$ at high pressure reduces the amount of pumping power for its sequestration.

One of the distinctive features of such plant is the high internal recirculating factor K_v defined as

Fig. 1. Qualitative diagram of the combustion modes as a function of temperature T and internal recirculating factor K_v

$$
K_v = \frac{w_{ric}^{(i)}}{w_{comb} + w_{O_2} + w_{g_{ric}}}
$$

where $w_{ric}^{(i)}$ is the mass flow rate of the combustion gases internally recirculated, w_{comb} is the fuel mass flow rate, w_{O_2} is the oxygen mass flow rate and $w_{g_{ric}}$ is the externally recirculated gases mass flow rate. As clearly seen from Figure 1 a sufficiently high temperature together with a high value of K_v leads to a stable combustion taking place without the presence of a flame front. This condition, known as "flameless"combustion or "mild" combustion (Milani (2006), Wunning and Wunning (1997)), enables a remarkable improvement in the combustion quality.

Due to such a peculiar high pressure characteristic, standard dynamic models cannot be used. We have therefore studied the combustion process from the very beginning by working out a new model based on first principles massenergy conservation equations.

Fig. 2. Reference plant scheme

With the obtained model, it has been possible to study the startup procedures and devising suitable control strategies.

After the description of the plant structure, we focus on the modeling of the combustion chamber and the flue gases system. The applicability of the model is illustrated by means of some simulation trials. Finally, we present the use of the model in the simulation of the startup procedure.

The equation we will write are rather complex. For simplicity, we organize all symbols in Table 1.

2. REFERENCE PLANT

The plant is schematically depicted in Fig.2.

In the mixer, the output gases of the combustor, at 1600C, are mixed with recirculated gases so lowering the temperature to $1200C$; in this way the ash melting $(slag)$ is avoided so guaranteeing clean surfaces of the evaporator and heat exchangers.

As can be seen in the scheme, the location of the heat exchangers along the flue gas path is a typical one of a boiler without re-heater. The combustion chamber is adiabatic and the evaporator is placed at the outlet of the mixer, where the temperature of the combustion gases is 1200C.

Along the flue gases path, there are two heaters and then the economizer.

Due to the high pressure of the gases, a double case is necessary. The outers sleeve, made of steel, supports the pressure stresses whereas the inner one is constituted by a membrane wall whose tubes are fed by the economizer cool water.

The flue gas recirculation is obtained through a blower which keeps the outlet pressure constant. The flow rates to the burner and to the mixer are controlled by two dumpers.

The boiler structure is shown in Fig.3. The feed-water flow cools and protects the refractory lining of the combustion chamber; in this way it's also possible to recover some thermal energy.

3. MODELING

3.1 Combustor modeling

The model we plan to develop is intended for simulation and control purposes. Therefore the model should be as simple as possible, without neglecting the main dynamics of the plant. Herein we work out a non-linear lumpedparameter model of order 12.

Table 1. List of symbols

Download English Version:

<https://daneshyari.com/en/article/717098>

Download Persian Version:

<https://daneshyari.com/article/717098>

[Daneshyari.com](https://daneshyari.com)