
Author's Accepted Manuscript

EXPERIMENTAL METHOD FOR THE DETERMINATION OF MATERIAL PARAMETERS OF PLASTICITY MODELS FOR TOUGHENED ADHESIVES

A. Chiminelli, R. Breto, M.A. Jiménez, F. Velasco, J. Abenojar, M.A Martínez

PII: S0143-7496(16)30050-1

DOI: http://dx.doi.org/10.1016/j.ijadhadh.2016.03.004

Reference: JAAD1807

To appear in: International Journal of Adhesion and Adhesives

Received date: 1 June 2015 Accepted date: 20 February 2016

Cite this article as: A. Chiminelli, R. Breto, M.A. Jiménez, F. Velasco, J. Abenojar and M.A Martínez, EXPERIMENTAL METHOD FOR THE DETERMINATION OF MATERIAL PARAMETERS OF PLASTICITY MODELS FOR TOUGHENED ADHESIVES, *International Journal & Adhesion and Adhesives*, http://dx.doi.org/10.1016/j.ijadhadh.2016.03.004

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

EXPERIMENTAL METHOD FOR THE DETERMINATION OF MATERIAL PARAMETERS OF PLASTICITY MODELS FOR TOUGHENED ADHESIVES

A. Chiminelli, R. Breto, M.A. Jiménez

Materials and Components Division, ITAINNOVA, Aragon Institute of Technology, María de Luna 7, 50018, Zaragoza, Spain.

F. Velasco, J. Abenojar, M.A.Martínez

Materials Science and Engineering Department, Univ. Carlos III de Madrid, Av. Universidad 30, 28911, Leganés, Spain.

Abstract

Toughened adhesives commonly present complex non-linear behaviours affecting the stress/strain distribution that develops in bonded joints under loads and, consequently, influencing their maximum load capacity. Although they can be related to different phenomena, these non-linearities are generally dominated by the plastic yield of the material. For detailed analysis of adhesive joints, these behaviours need to be adequately characterised through proper material models. In this sense, models that take into account the dependency of the yield surface and the plastic potential with the hydrostatic component of the stress tensor have been widely used with certain success in the last years. The definition of such models usually requires the execution of various experimental tests for the determination of the associated material parameters, constituting a significant cost/effort in terms of characterization.

In order to minimize the amount of tests required, the present work is focused on the definition of a sequential/multiaxial test that can be carried out using a single sample giving enough information to completely determine the mentioned parameters. More concretely, the experimental procedure proposed involves torsion and tensile tests that are executed consecutively. The design of the test has been carried out using the finite element method as calculation tool and considering the exponent Drucker-Prager model. The verification of the experimental procedure proposed has been carried out for a toughened epoxy adhesive that has been characterized through conventional tensile and torsion tests in previous works.

Keywords

Adhesives experimental testing, sequential torsion and tensile tests, toughened adhesives, non-linear behaviour, Drucker-Prager model, Finite Element Method.

Download English Version:

https://daneshyari.com/en/article/7171070

Download Persian Version:

https://daneshyari.com/article/7171070

<u>Daneshyari.com</u>