
A general solution for the two-dimensional stress analysis of balanced
and unbalanced adhesively bonded joints

Zunxu Liu a, YongAn Huang a,n, Zhouping Yin a,n, Stefano Bennati b, Paolo S. Valvo b

a State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
b Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, I-56126 Pisa, Italy

a r t i c l e i n f o

Article history:
Accepted 19 May 2014
Available online 28 May 2014

Keywords:
Stress analysis
Analytical solution
Adhesively bonded joints
Stiffened plate/joint
Single-strap joint
Single-lap joint

a b s t r a c t

This paper presents an efficient analytical solution strategy to determine the adhesive stresses in
balanced and unbalanced adhesively bonded joints with mixed force loading and/or displacement
boundary conditions. The adhesive stresses are expressed in terms of geometrical dimensions and
material properties, combined with integration constants obtained numerically. The model is success-
fully applied for the analysis of various types of joints, including balanced and unbalanced stiffened
plate/joint, single-strap joint, and single-lap joint. In all such cases, the linear equation sets are supplied
to determine the integration constants in the final stress expressions. The analytical predictions agree
well with the finite element results for adhesive stresses. This proposed model can be extended
conveniently to predict the mechanical behavior of similar bonded structures such as composite
laminates, electronics packaging, and flexible electronics structures.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Adhesively bonded joints have found extensive applications for
load transfer and connection elements in aerospace, mechanical,
and civil engineering structures [1], for structural repairing [2] and
for surface-bonded piezoelectric smart structures [3]. Recently,
they play increasingly important roles in flexible electronics
design [4] and microelectronics packaging [5,6]. Adhesive joints
generally consist of three layers: two adherends and an adhesive
layer. Due to the discontinuity of the layers at the edges, compli-
cated stress fields and high stress concentrations usually occur in
the vicinity of the corners of the adhesive layers. Such high
adhesive stresses often result in local yielding of the adhesive
and crack propagations in the adhesive or at the adhesive/
adherend interface, and may finally lead to the overall failure of
the joint. Therefore, efficient and reasonably accurate estimation
of the stress level in adhesively bonded joints is crucial for joint
design and structural safety evaluation as well as for a better
understanding of the underlying mechanisms of failure.

Over the decades, there has been a wide body of the literature
on the analysis of adhesively bonded joints typically including, in
particular, stiffened plate/joint [5–8], single-strap joint [8–10], and

single-lap joint [11–20]. Detailed reviews on the historical devel-
opment of both analytical models and a finite element method
(FEM) for stress analysis of joints can be found in the recent review
papers by da Silva et al. [21,22] and He [23]. The overwhelming
majority of the aforementioned works focus on the singe-lap joint
configuration. The pioneering works by Goland and Reissner [11]
furnished the classical solution for the adhesive stresses in joints
subjected to mechanical loads. Further improvements have been
presented by Hart-Smith [12], Adams and Mallick [16], Tsai et al.
[17,18], etc. In an attempt to rationalize the analysis of bonded
joints under pure force loading, Bigwood and Crocombe further
derived a general elastic analysis [24]. In addition, a large number
of experimental studies involving the strength predictions of the
single-lap joints were made as well [25–29]. The stiffened and
single-strap joint configurations, however, have received little
attention. Relevant work on the deformation analysis of the
singe-strap joint has been carried out by Shahin and Taheri [9],
Li [10], etc. By comparing the reported models, it is found that
with releasing the assumptions, the governing equations become
increasingly complicated, so that it is challengeable to obtain
closed-form expressions for the solution to the differential pro-
blem. In such cases, one strategy is to obtain approximate closed-
form solutions for relatively simple and/or extremely simplified
structures. Another strategy is to solve numerically the differential
equations. A similar modelling approach can be adopted to study
the analogous problem of the delamination of composite lami-
nates [30]. Accordingly, a delaminated laminate is modelled as an
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assemblage of sublaminates, connected by a deformable (in most
cases, a linearly elastic) interlaminar interface. In such cases, the
interface is not necessarily representative of a physical adhesive
layer, but is introduced into the model to take into account
conventionally the transverse deformability of the laminates,
which is neglected in models based on Euler–Bernoulli's simple
beam theory. The authors have used this modelling approach to
develop an enhanced beam-theory (EBT) model of the asymmetric
double cantilever beam (ADCB) test, for which a numerical-
analytical solution strategy has been proposed [31]. Recently, an
EBT model has been developed also for the mixed-mode bending
(MMB) test [32,33]. Furthermore, the model has been extended to
general layered structures, showing how the same analytical
solution can be used to describe both delaminated laminates and
joints [34].

Actually, even though adhesively bonded joints have been
intensively investigated over the past decades, more attentions
were paid to modelling the overlap region with pure force loading
at the adherend ends, namely, consisting of tensile and shear
forces and bending moment components. In this paper, we present
a general mechanical model and a related solution strategy, which
are expected to provide an efficient methodology to model
different bonded joints under mixed (force and/or displacement)
boundary conditions. It is possible not only to obtain the analytical
expressions for the adhesive stresses but also internal forces,
displacements, strain and stress components in the adherends.
The layout of the paper is as follows. Section 2 describes the
mechanical model and provides the theoretical framework of our
solution strategy for general adhesively bonded joints. Then the
coupled differential problem is solved by conveniently assuming
the adhesive stresses as the main unknowns, to obtain a complete
analytical solution for the adhesive stresses, internal forces and
displacements. Section 3 describes how to apply the force and/or
displacement boundary conditions to obtain the integration con-
stants for various balanced and unbalanced adhesively bonded
joints, including the stiffened plate/joint, single-strap joint, and
single-lap joint. Lastly, in Section 4 the effectiveness and accuracy
of the proposed solution strategy are verified by comparison of
the predicted adhesive stresses with those computed by using
the FEM and other analytical solutions of the literature. Finally,
Section 5 draws the conclusions.

2. Formulation of the problem

2.1. Adhesive model in the overlap joints

Generally speaking, overlap joints consist of two slender
adherend layers, whose materials may be identical or different
from each other, bonded through a thin adhesive layer as sketched
in Fig. 1(a). The thicknesses of the upper and lower adherends are
denoted by H1 and H2, respectively, and the thickness of the
adhesive layer in between is ha, with ha ⪡ H1, H2. Considering a
linear elastic body, the materials are assumed isotropic, and the
corresponding elastic modulus and Poisson's ratio are E1, ν1, and
E2, ν2 for the adherends, and Ea, νa for the adhesive. Local
coordinate systems are fixed with their origins at the mid-planes
of both adherends. The x-coordinate measures the distance in the
axial direction, while local axes z1 and z2 denote the distances in
the transverse direction from the mid-planes of adherends 1 and
2, respectively. Accordingly, we indicate with ui and wi the mid-
plane displacements of the substrates along the axial and trans-
verse directions, respectively, and with ϕi the rotations of their
cross sections, positive if counter-clockwise (here, and in the
following, i¼1, 2 refer to the upper and lower adherends, respec-
tively). In what follows, we consider a unit width in the y-direction

(namely, normal to the plane of the figure) and assume plane
strain conditions for all the elastic elements involved.

According to Timoshenko's beam theory the axial and trans-
verse displacements at a point inside the adherends are given by
Uiðx; ziÞ ¼ uiðxÞþziϕiðxÞ and Wiðx; ziÞ ¼wiðxÞ. As mentioned, we
neglect any variation of the stresses and strains in the adhesive
layer along the z-direction. In particular, the strain components at
a point in the adhesive are approximated by their mean values
computed from the relative displacements at the top and bottom
surfaces of the adherends. Hence:

εazz ¼
W top

2 �Wbottom
1

ha
¼W2 jz2 ¼ � h2

�W1jz1 ¼ h1
ha

¼ w2 �w1
ha

;

γaxz ¼
Utop

2 �Ubottom
1

ha
¼ U2 jz2 ¼ � h2

�U1 jz1 ¼ h1
ha

¼ u2 �u1 �h1ϕ1 �h2ϕ2
ha

;

8><
>: ð1Þ

where h1¼H1/2 and h2¼H2/2 are the half-thicknesses of the
adherends. Under plane strain conditions, if we assume that the
adhesive longitudinal normal stress is negligible, only transverse
normal (peel) and shear stresses exist in the adhesive. Hooke's law
yields the adhesive peel and shear stresses as s¼ En

aε
a
zz and

τ¼ Gaγaxz , respectively, where Ean¼Ea/(1�va
2) and Ga¼Ea/[2

(1þva)] are the elastic modulus (in plane strain) and shear
modulus of the adhesive. Based on the aforementioned assump-
tions, the adhesive layer consists of a uniform, continuous dis-
tribution of springs acting in the normal and tangential directions
with respect to the interface plane. Accordingly, we define the peel
stiffness, ks, and shear stiffness, kτ. A simple, yet effective
estimate of the latter constants is given by ks¼Ean/ha and kτ¼Ga/
ha. Therefore:

s¼ ksðw2�w1Þ;
τ¼ kτðu2�u1�h1ϕ1�h2ϕ2Þ:

(
ð2Þ

Fig. 1. (a) Typical adhesively bonded joints and corresponding overlap region; and
(b) free-body diagrams of adherend and adhesive infinitesimal elements.
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