Accepted Manuscript

Experimental characterisation and computational modelling for cyclic elasticplastic constitutive behaviour and fatigue damage of X100Q for steel catenary risers

Ronan J. Devaney, Padraic E. O'Donoghue, Sean B. Leen

PII: S0142-1123(18)30267-6

DOI: https://doi.org/10.1016/j.ijfatigue.2018.06.032

Reference: JIJF 4736

To appear in: International Journal of Fatigue

Received Date: 2 February 2018 Revised Date: 15 June 2018 Accepted Date: 20 June 2018

Please cite this article as: Devaney, R.J., O'Donoghue, P.E., Leen, S.B., Experimental characterisation and computational modelling for cyclic elastic-plastic constitutive behaviour and fatigue damage of X100Q for steel catenary risers, *International Journal of Fatigue* (2018), doi: https://doi.org/10.1016/j.ijfatigue.2018.06.032

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

EXPERIMENTAL CHARACTERISATION AND

COMPUTATIONAL MODELLING FOR CYCLIC ELASTIC-

PLASTIC CONSTITUTIVE BEHAVIOUR AND FATIGUE

DAMAGE OF X100Q FOR STEEL CATENARY RISERS

Ronan J. Devaney^{1,3}, Padraic E. O'Donoghue^{2,3}, Sean B. Leen*^{1,3}

¹Mechanical Engineering, College of Engineering & Informatics, NUI Galway, Ireland.

²Civil Engineering, College of Engineering & Informatics, NUI Galway, Ireland.

³Ryan Institute for Environmental, Marine and Energy Research, NUI Galway, Ireland.

*sean.leen@nuigalway.ie - +35391 495 955

Abstract: New higher strength steels are required for deep and ultra-deepwater steel catenary risers (SCRs). In this work, the cyclic elastic-plastic-damage behaviour of X100Q, a candidate next-generation SCR material is experimentally characterised and modelled. The material is shown to exhibit early life (primary) fatigue damage followed by the more conventional (secondary) fatigue damage; as a result, it is necessary to demarcate the observed cyclic softening into dynamic recovery and damage-induced softening. An automated constitutive parameter optimisation process in combination with a new two-stage cyclic damage evolution model successfully predicts the effect of strain-range on damage evolution. The model is implemented in a user material (UMAT) subroutine for multiaxial application, within a hierarchical global-local modelling methodology for dynamic fatigue analysis of an SCR girth weld geometry. The interdependency between fatigue damage-induced material degradation and cyclic plasticity at the weld is shown for a range of load cases.

Keywords: Damage mechanics; Fatigue; Offshore; Welded joints

1. Introduction

High-strength low-alloy (HSLA) steels are an important category of engineering

materials, which are used across a variety of domains, from the automotive and

shipbuilding industries to applications such as pipelines and cranes. Some of the key

1

Download English Version:

https://daneshyari.com/en/article/7171281

Download Persian Version:

https://daneshyari.com/article/7171281

<u>Daneshyari.com</u>