Accepted Manuscript

A more effective rationalisation of fatigue crack growth rate data for various specimen geometries and stress ratios using the CJP model

Bing Yang, J.M. Vasco-Olmo, F.A. Díaz, M.N. James

PII: S0142-1123(18)30213-5

DOI: https://doi.org/10.1016/j.ijfatigue.2018.05.027

Reference: JIJF 4699

To appear in: International Journal of Fatigue

Received Date: 23 February 2018

Revised Date: 7 May 2018 Accepted Date: 25 May 2018

Please cite this article as: Yang, B., Vasco-Olmo, J.M., Díaz, F.A., James, M.N., A more effective rationalisation of fatigue crack growth rate data for various specimen geometries and stress ratios using the CJP model, *International Journal of Fatigue* (2018), doi: https://doi.org/10.1016/j.ijfatigue.2018.05.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A more effective rationalisation of fatigue crack growth rate data for various specimen geometries and stress ratios using the CJP model

Bing Yang * 1, J.M. Vasco-Olmo², F.A. Díaz² and M.N. James ^{3, 4, *}

³ School of Engineering, University of Plymouth, Plymouth, England

⁴ Department of Mechanical Engineering, Nelson Mandela Metropolitan University, Port Elizabeth,

South Africa

* Corresponding author: mjames@plymouth.ac.uk

Abstract

This paper demonstrates that the CJP model of crack tip stresses, through its ability to directly predict the effective range of stress intensity factor, also provides an improved rationalisation of fatigue crack growth rate across several different specimen geometries and stress ratios. This aim is achieved through a comparison between the crack growth rate rationalisation obtained using the CJP stress intensity factor range, ΔK_{CJP} , and that derived from the standard Irwin definition of $\Delta K = K_{max} - K_{min}$. The results demonstrate a significant improvement arising from the use of the CJP stress intensity factors and also highlight the fact that the CJP crack tip field model does not require the incorporation of compliance-based geometry-correction factors in the calculation of stress intensity. Fatigue crack growth rate tests were carried out on compact tension (CT) and double edge-notched tension (DENT) specimens of Grade 2 titanium at various stress ratios between 0.05 and 0.6 whilst making simultaneous crack tip displacement field measurements using the digital image correlation (DIC) technique. The DIC data were then processed to obtain the CJP stress intensity factors K_F and K_R . Calculation of the CJP stress intensity factors is relatively complex and rests on the acquisition of displacement field data. In order to facilitate simplified prediction of crack growth rates using the CJP model, this paper also determines a relationship between ΔK_{CJP} and ΔK using calibration curves that relate the values of the parameters in the CJP

¹ State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China

² Departamento de Ingeniería Mecánica y Minera, University of Jaén, Jaén, Spain

^{*} This work was performed while Bing Yang was a Visiting Researcher at the University of Plymouth

Download English Version:

https://daneshyari.com/en/article/7171350

Download Persian Version:

https://daneshyari.com/article/7171350

Daneshyari.com