Accepted Manuscript

Outcomes from the Fatigue Testing of Seventeen Centre Fuselage Structures

L. Molent, S.A. Barter, B. Dixon, G. Swanton

PII:	S0142-1123(18)30060-4
DOI:	https://doi.org/10.1016/j.ijfatigue.2018.02.018
Reference:	JIJF 4583
To appear in:	International Journal of Fatigue
Received Date:	12 December 2017
Revised Date:	5 February 2018
Accepted Date:	12 February 2018

Please cite this article as: Molent, L., Barter, S.A., Dixon, B., Swanton, G., Outcomes from the Fatigue Testing of Seventeen Centre Fuselage Structures, *International Journal of Fatigue* (2018), doi: https://doi.org/10.1016/j.ijfatigue.2018.02.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Outcomes from the Fatigue Testing of Seventeen Centre Fuselage Structures L. Molent^{*}, S.A. Barter, B. Dixon and G. Swanton

Aerospace Division, 506 Lorimer Street Fishermans Bend Victoria 3207 AUSTRALIA

ABSTRACT

This paper summarises some of the significant outcomes of a fatigue test program for ex-service aircraft structure. Seventeen F/A-18 Hornet aircraft aluminium alloy 7050-T7451 centre fuselages (referred to as centre barrels (CBs)) were tested, torn down and inspected in this program. Significant results of the test program included the demonstration of the repeatability of service fatigue cracking locations, the collection of data to characterise the types of defects that typically nucleate fatigue cracks in aircraft components and a more accurate assessment of the safe operating life of this structure. The results of the program also enhanced the existing understanding of fatigue cracking in aluminium alloy 7050-T7451. Furthermore, the improved understanding of the fatigue cracking that occurred in service F/A-18 CBs and the damage tolerance of this structure allowed increased aircraft availability and reduced maintenance costs in the Royal Australian Air Force (RAAF) F/A-18 fleet.

Keywords: Fatigue crack growth; Full-scale fatigue tests; F/A-18 Hornet aircraft; fatigue lifing

List of Acronyms

a	Current crack depth
a_0	Initial crack depth per exponential crack growth model, equivalent to the EPS.
AA	Aluminium Alloy
<i>a</i> _{Crit}	Crack depth at fracture
AFHRS	Airframe Hours
a _{max FT55}	Maximum crack depth that occurred on FT55
$a_{\rm RST}$	Largest crack depth that can safely sustain RST loading
ASLMP	Aircraft Structural Life Monitoring Program
b	Geometry factor
b _{FT55}	Geometry factor for cracking in FT55
b _{RST}	Geometry factor for $a_{\rm RST}$
СВ	Centre Barrel
CBR	Centre Barrel Replacement
DIL	Damage Item Location
DLL	Design Limit Load
DST	Defence Science and Technology
EOS	End of Service
EPS	Equivalent Pre-Crack Size
FALSTAFF	Fighter Aircraft Loading Standard For Fatigue evaluation
FC	Fracture Critical

^{**} Corresponding author. E-mail address: <u>Loris.Molent@dst.defence.gov.au</u> (L. Molent)

Download English Version:

https://daneshyari.com/en/article/7171513

Download Persian Version:

https://daneshyari.com/article/7171513

Daneshyari.com